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Robot Mapping  

Grid-based FastSLAM 

Cyrill Stachniss 
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Motivation 

!  So far, we addressed landmark-based 
SLAM (EKF, SEIF, FastSLAM) 

!  We learned how to build grid maps 
assuming “known poses” 

Today: SLAM for building grid maps 
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Mapping With Raw Odometry 

Courtesy: Dirk Hähnel 4 

Observation 

!  Assuming known poses fails! 

Questions 
!  Can we solve the SLAM problem if no 

pre-defined landmarks are available? 
!  Can we use the ideas of FastSLAM to 

build grid maps? 
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Rao-Blackwellization for SLAM 

!  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization for SLAM 

!  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

path posterior 
(particle filter) 

map posterior 
(given the path) 
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Grid-based SLAM 

!  As with landmarks, the map depends 
on the poses of the robot during data 
acquisition 

!  If the poses are known, grid-based 
mapping is easy (�mapping with 
known poses�) 
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A Graphical Model for Grid-
Based SLAM 
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters 
!  Each particle represents a possible 

trajectory of the robot 
!  Each particle maintains its own map  
!  Each particle updates it using 

“mapping with known poses” 
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Particle Filter Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 
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Performance of Grid-based 
FastSLAM 1.0 
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Problem 
!  Too many samples are needed to 

sufficiently model the motion noise 
!  Increasing the number of samples is 

difficult as each map is quite large 

!  Idea: Improve the proposal to 
generate a better prediction. This 
reduces the required number of 
particles 
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Improved Proposal 

!  Compute an improved proposal that 
considers the most recent observation 

 
Goals: 
!  More precise sampling 
!  More accurate maps 
!  Less particles needed 
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For lasers                       
is typically peaked and  
dominates the product 

[Arulampalam et al., 01] 

The Optimal Proposal 
Distribution 
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Proposal Distribution 
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Proposal Distribution 
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Proposal Distribution 

18 

Proposal Distribution 

globally limits  
the area over  
which to integrate 
(odometry) 

locally limits  
the area over  
which to integrate 
(measurement) 

19 

Proposal Distribution 

global local 
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Proposal Distribution 

Gaussian approximation: 

How to sample from this term? 

with 
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Gaussian Proposal Distribution 

Approximate this equation by a Gaussian: 

Sampled points around  
the maximum 

maximum reported 
by a scan matcher 

Gaussian  
approximation 

Draw next 
generation of 
samples 
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Estimating the Parameters of 
the Gaussian for Each Particle 

xj are points sampled around the 
location x* to which the scan matching 
has converged to 
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Computing the Importance 
Weight 

[Arulampalam et al., 01] 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 

Sampled points around the  
maximum of the likelihood 
function found by scan-matching 28 

Improved Proposal 

!  The proposal adapts to the structure 
of the environment 
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Resampling 

!  Resampling at each step limits the 
“memory” of our filter 

!  Suppose we loose each time 25% of 
the particles, this may lead to: 

!  Goal: Reduce the resampling actions 
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Selective Resampling 

!  Resampling is necessary to achieve 
convergence 

!  Resampling is dangerous, since 
important samples might get lost 
(“particle depletion”) 

!  Resampling makes only sense if 
particle weights differ significantly 

!  Key question: When to resample? 
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Number of Effective Particles 

!  Empirical measure of how well the 
target distribution is approximated by 
samples drawn from the proposal 

 
!  nef  describes “the inverse variance of 

the normalized particle weights” 
!  For equal weights, the sample 

approximation is close to the target 
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Resampling with 

!  If our approximation is close to the 
target, no resampling is needed 

!  We only resample when        drops 
below a given threshold (       ) 
 

!  Note: weights need to be normalized 
[Doucet, �98; Arulampalam, �01] 
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Typical Evolution of 

visiting new 
areas closing the 

first loop 

second loop closure 

visiting 
known areas 
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Intel Lab 
!  15 particles 
!  four times faster 

than real-time 
P4, 2.8GHz 

!  5cm resolution 
during scan 
matching 

!  1cm resolution in 
final map 
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Intel Lab 
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Outdoor Campus Map 
!  30 particles 
!  250x250m2 

!  1.75 km 
(odometry) 

!  30cm resolution 
in final map 
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MIT Killian Court 

! The �infinite-corridor-dataset� at MIT 
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MIT Killian Court 
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MIT Killian Court – Video 
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Real World Application 

!  This guy uses a similar technique…  
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Problems of Gaussian Proposals 

!  Gaussians are uni-model distributions 
!  In case of loop-closures, the likelihood 

function might be multi-modal 
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Problems of Gaussian Proposals 

!  Multi-modal likelihood function can 
cause filter divergence 
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Efficient Multi-Modal Sampling 
!  Approximate the likelihood in a better way! 

 
 
 
!  Sample from odometry first and the use  

this as the start point for scan matching 

odometry 

mode 1 mode 2 

odometry with uncertainty 

44 

The Two-Step Sampling Works! 

…with nearly zero overhead 



45 

Difference Between the Optimal 
Proposal and the Approximations 

Two-Step Sampling 

Gaussian Proposal 

+ 

+ 

+ 

+ 

+ 

+ 
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Is a Gaussian an Accurate 
Choice for the Proposal?  
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Gaussian Proposal: Yes or No? 

!  Gaussian allow for efficient sampling 
!  Problematic in multi-model cases 
!  Laser-baser SLAM: 3-6% multi-modal 

distribution (for the datasets here) 
!  Gaussian proposals can lead to 

divergence 
!  Two-step sampling process overcomes 

this problem effectively and efficiently 
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Conclusion 

!  The ideas of FastSLAM can also be 
applied in the context of grid maps 

!  Improved proposals are essential  
!  Similar to scan-matching on a per-

particle base 
!  Selective resamples reduces the risk 

of particle depletion 
!  Substantial reduction of the required 

number of particles 
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Grid-FastSLAM with Improved Proposals 
!  Grisetti, Stachniss, Burgard: Improved 

Techniques for Grid Mapping with Rao-
Blackwellized Particle Filters, 2007  

!  Stachniss, Grisetti, Burgard, Roy. Analyzing 
Gaussian Proposal Distributions for Mapping 
with Rao-Blackwellized Particle Filters, 2007 
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GMapping 

!  Efficient open source implementation 
of the presented method (2005-2008) 

!  C++ Code available via  
svn co https://svn.openslam.org/data/svn/gmapping 


