Robot Mapping

Grid-based FastSLAM

Cyrill Stachniss

Motivation

- So far, we addressed landmark-based SLAM (EKF, SEIF, FastSLAM)
- We learned how to build grid maps assuming "known poses"

Today: SLAM for building grid maps

Mapping With Raw Odometry

Courtesy: Dirk Hähnel

Observation

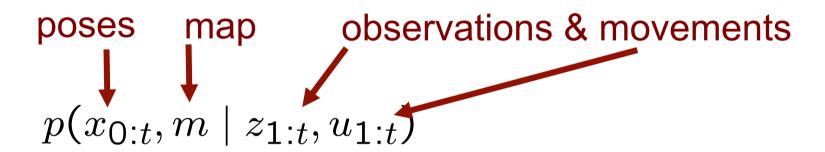
Assuming known poses fails!

Questions

- Can we solve the SLAM problem if no pre-defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?

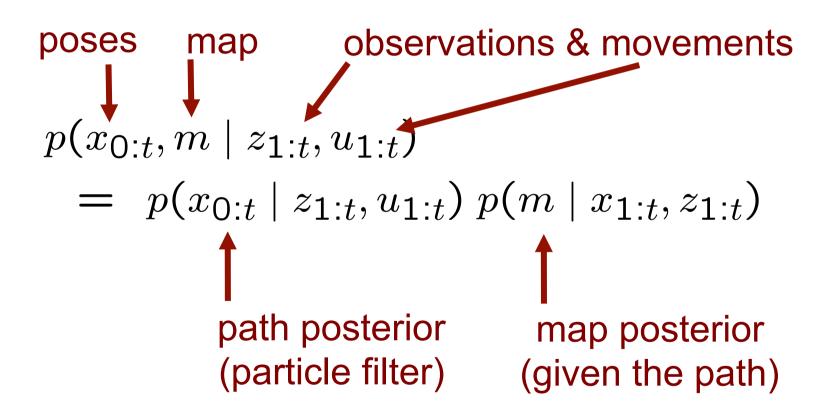
Rao-Blackwellization for SLAM

Factorization of the SLAM posterior



Rao-Blackwellization for SLAM

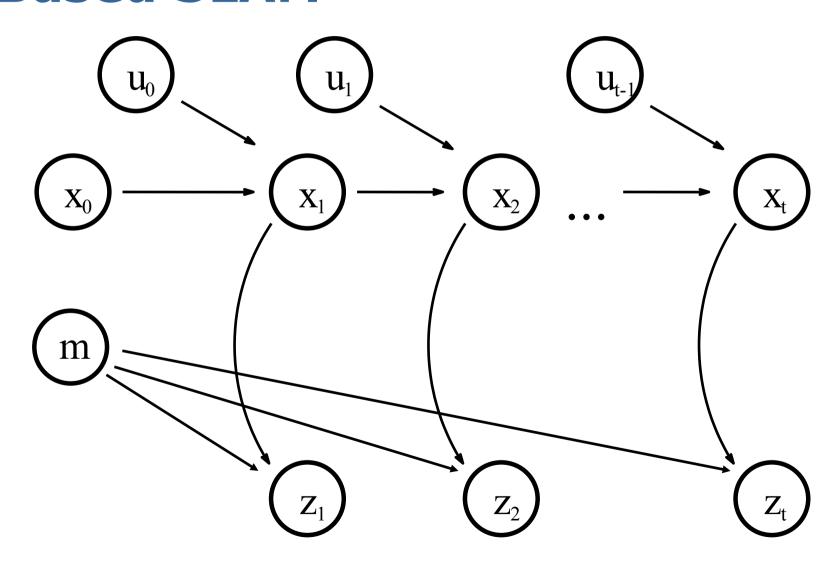
Factorization of the SLAM posterior



Grid-based SLAM

- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy ("mapping with known poses")

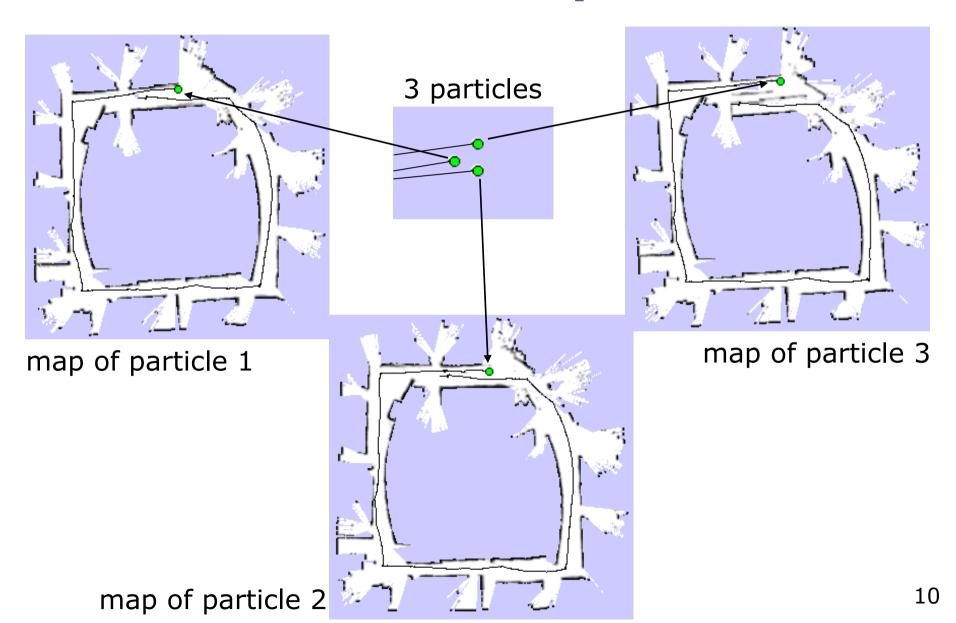
A Graphical Model for Grid-Based SLAM



Grid-Based Mapping with Rao-Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot
- Each particle maintains its own map
- Each particle updates it using "mapping with known poses"

Particle Filter Example



Performance of Grid-based FastSLAM 1.0

Problem

- Too many samples are needed to sufficiently model the motion noise
- Increasing the number of samples is difficult as each map is quite large
- Idea: Improve the proposal to generate a better prediction. This reduces the required number of particles

Improved Proposal

 Compute an improved proposal that considers the most recent observation

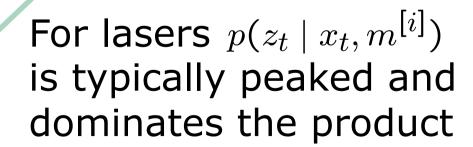
$$x_t^{[k]} \sim p(x_t \mid x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

Goals:

- More precise sampling
- More accurate maps
- Less particles needed

The Optimal Proposal Distribution [Arulampalam et al., 01]

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) = \frac{p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)}{p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)}$$



$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) = \frac{\overbrace{p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)}^{\tau(x_t)}}{p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)}$$

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t}) = \underbrace{\frac{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}{p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})}}_{p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})}$$

$$p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t}) = \int_{x_{t}} p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t}) = \underbrace{\frac{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}{p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})}}_{p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})$$

$$p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t}) = \int_{x_{t}} p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t}) = \frac{\tau(x_{t})}{\int_{x_{t}} \tau(x_{t}) dx_{t}}$$

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t)$$

$$= \frac{\int_{x_{t}}^{\tau(x_{t})} \underbrace{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}_{p(x_{t} \mid x_{t-1}, u_{t}) dx_{t}}$$

locally limits the area over which to integrate (measurement)

globally limits the area over which to integrate (odometry)

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t})$$

$$= \frac{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}{\int_{x_{t}} p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}}$$

$$| \text{local global}$$

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) \simeq \frac{\tau(x_t)}{\int_{\{x_t \mid \tau(x_t) > \epsilon\}} \tau(x_t) dx_t}$$

with
$$\tau(x_t) := p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)$$

How to sample from this term?

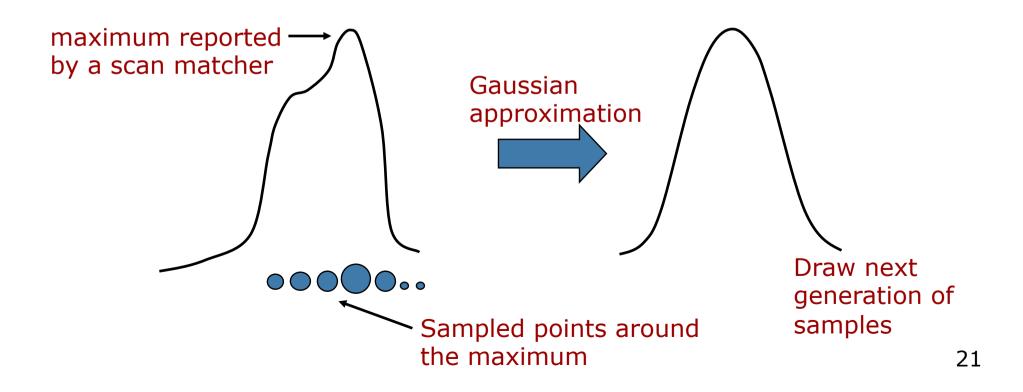
Gaussian approximation:

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) \simeq \mathcal{N}(\mu^{[i]}, \Sigma^{[i]})$$

Gaussian Proposal Distribution

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) \simeq \frac{\tau(x_t)}{\int_{\{x_t \mid \tau(x_t) > \epsilon\}} \tau(x_t) dx_t}$$

Approximate this equation by a Gaussian:



Estimating the Parameters of the Gaussian for Each Particle

$$\mu^{[i]} = \frac{1}{\eta} \sum_{j=1}^{K} x_j \, \tau(x_j)$$

$$\Sigma^{[i]} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{[i]}) (x_j - \mu^{[i]})^T \, \tau(x_j)$$

 x_j are points sampled around the location x^* to which the scan matching has converged to

$$w_t^{[i]} = w_{t-1}^{[i]} p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)$$

[Arulampalam et al., 01]

$$w_{t}^{[i]} = w_{t-1}^{[i]} p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})$$

$$= w_{t-1}^{[i]} \int_{x_{t}} p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$w_{t}^{[i]} = w_{t-1}^{[i]} p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})$$

$$= w_{t-1}^{[i]} \int_{x_{t}} \underbrace{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}_{\tau(x_{t})} dx_{t}$$

$$w_{t}^{[i]} = w_{t-1}^{[i]} p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})$$

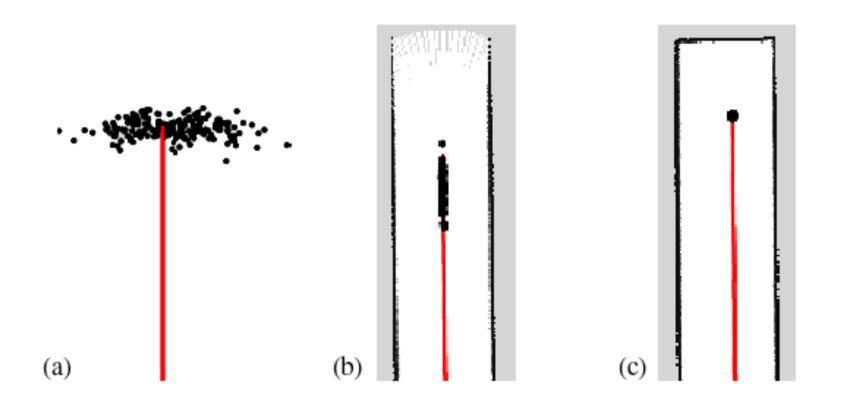
$$= w_{t-1}^{[i]} \int_{x_{t}} p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$\simeq w_{t-1}^{[i]} \int_{\{x_{t} \mid \tau(x_{t}) > \epsilon\}} \tau(x_{t}) dx_{t}$$

Sampled points around the maximum of the likelihood function found by scan-matching₂₇

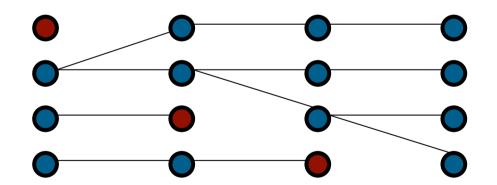
Improved Proposal

 The proposal adapts to the structure of the environment



Resampling

- Resampling at each step limits the "memory" of our filter
- Suppose we loose each time 25% of the particles, this may lead to:



Goal: Reduce the resampling actions

Selective Resampling

- Resampling is necessary to achieve convergence
- Resampling is dangerous, since important samples might get lost ("particle depletion")
- Resampling makes only sense if particle weights differ significantly

• Key question: When to resample?

Number of Effective Particles

 Empirical measure of how well the target distribution is approximated by samples drawn from the proposal

$$n_{eff} = \sum_{i} \left(w_t^{[i]} \right)^{-2}$$

- n_{eff} describes "the inverse variance of the **normalized** particle weights"
- For equal weights, the sample approximation is close to the target

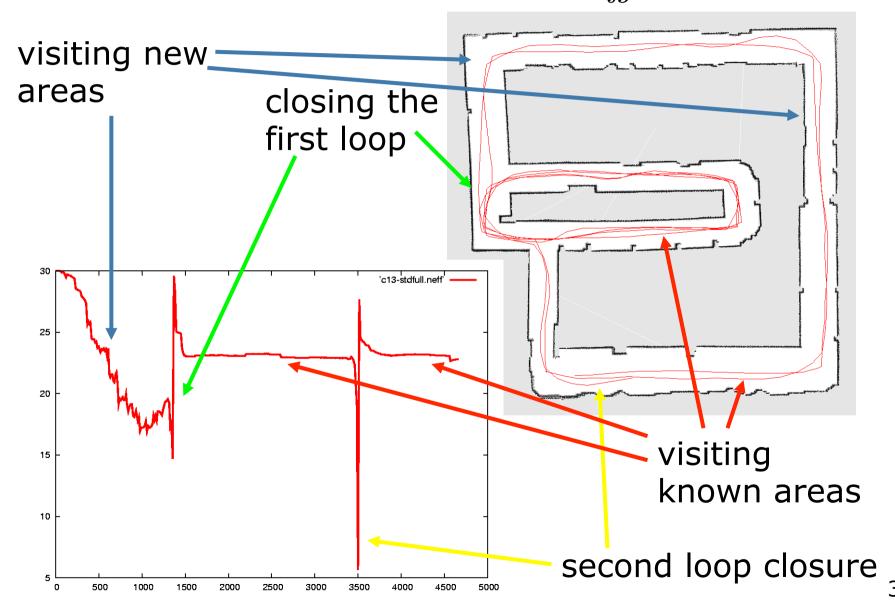
Resampling with $n_{e\!f\!f}$

- If our approximation is close to the target, no resampling is needed
- We only resample when $n_{e\!f\!f}$ drops below a given threshold (N/2)

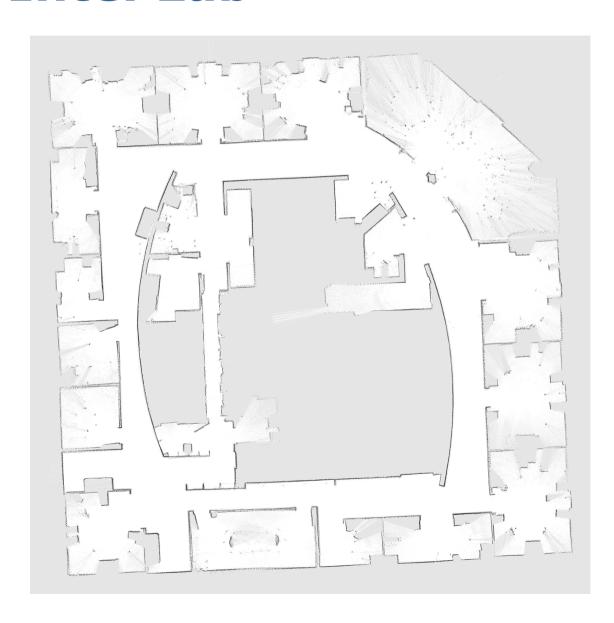
$$\sum_{i} \left(w_t^{[i]} \right)^{-2} \stackrel{?}{<} N/2$$

Note: weights need to be normalized [Doucet, '98; Arulampalam, '01]

Typical Evolution of n_{eff}



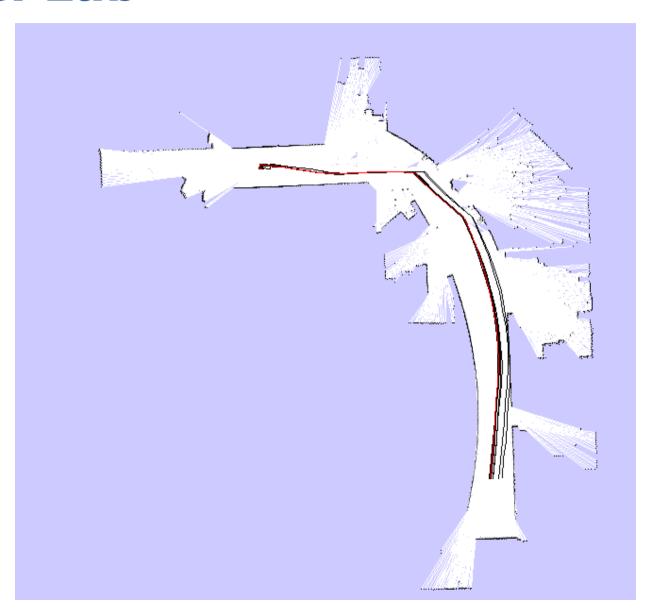
Intel Lab



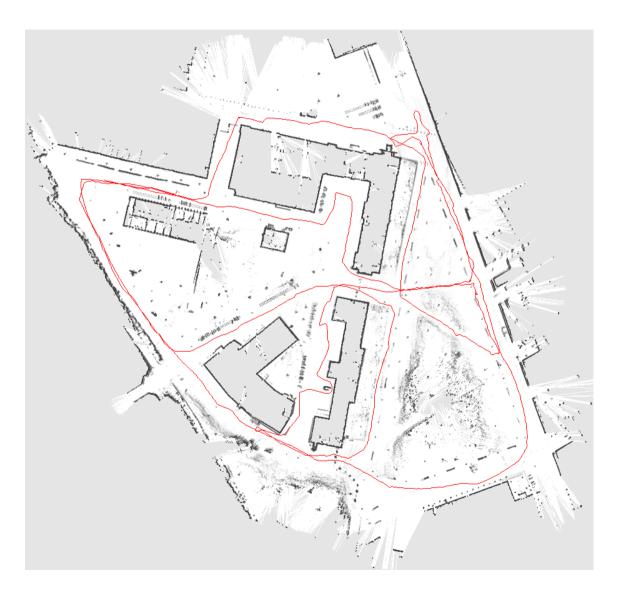
15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Intel Lab



Outdoor Campus Map



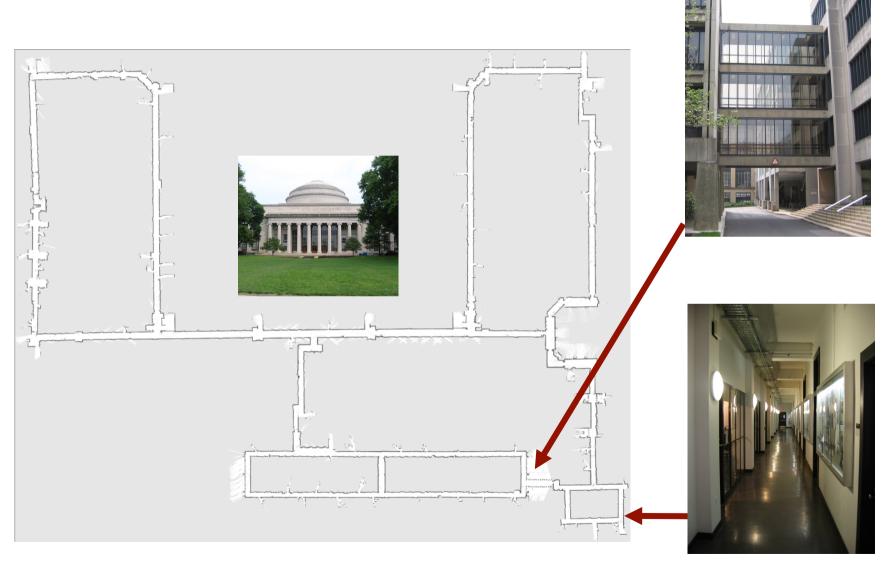
30 particles

- 250x250m²
- 1.75 km (odometry)
- 30cm resolution in final map

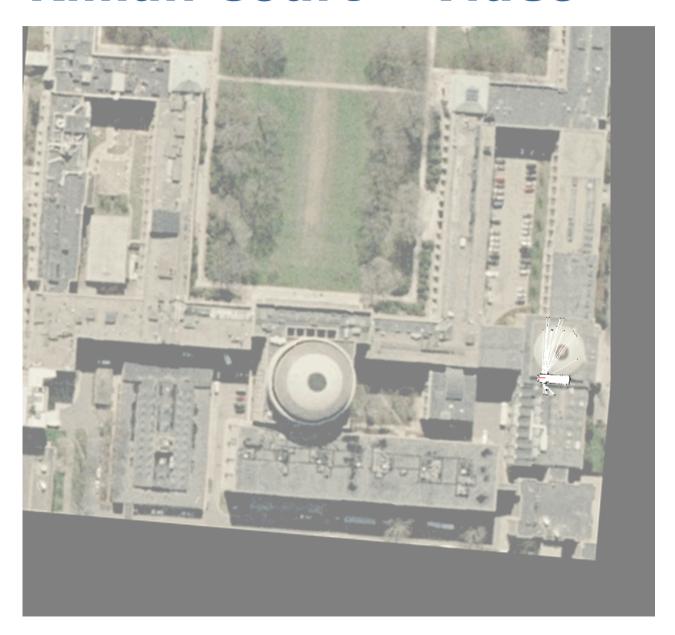
MIT Killian Court

The "infinite-corridor-dataset" at MIT

MIT Killian Court



MIT Killian Court - Video



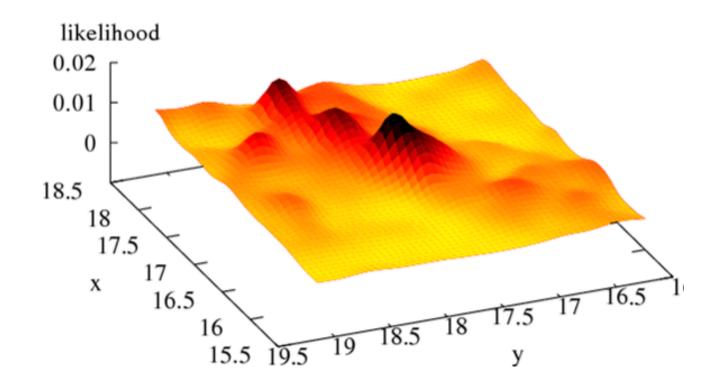
Real World Application

This guy uses a similar technique...

40

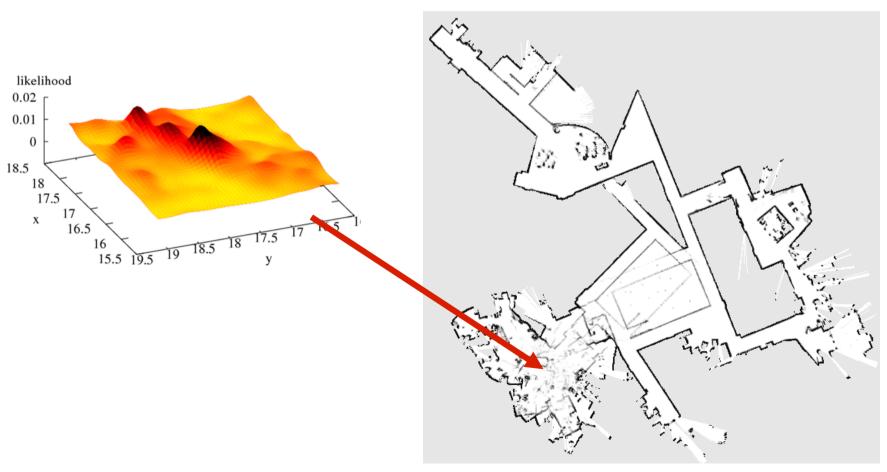
Problems of Gaussian Proposals

- Gaussians are uni-model distributions
- In case of loop-closures, the likelihood function might be multi-modal



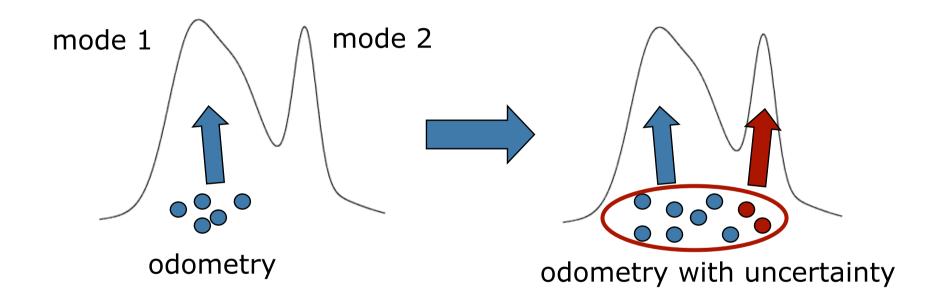
Problems of Gaussian Proposals

 Multi-modal likelihood function can cause filter divergence



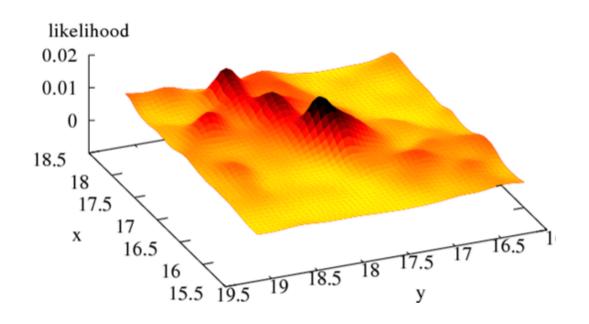
Efficient Multi-Modal Sampling

Approximate the likelihood in a better way!

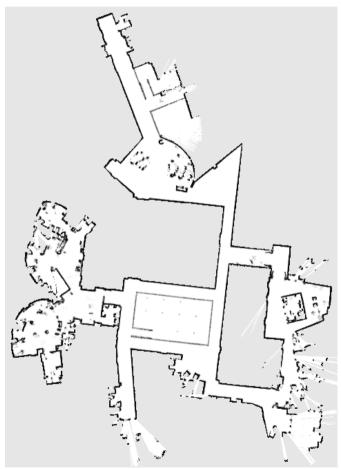


 Sample from odometry first and the use this as the start point for scan matching

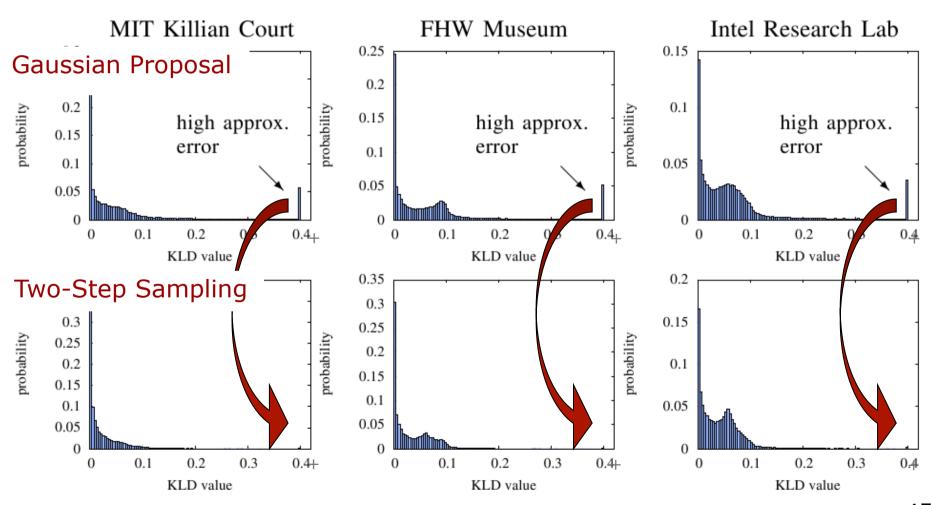
The Two-Step Sampling Works!



...with nearly zero overhead



Difference Between the Optimal Proposal and the Approximations



Is a Gaussian an Accurate Choice for the Proposal?

Dataset	Gauss	Non-	Multi-
		Gauss;	modal
		1 mode	
Intel Research Lab	89.2%	7.2%	3.6%
FHW Museum	84.5%	10.4%	5.1%
Belgioioso	84.0%	10.4%	5.6%
MIT CSAIL	78.1%	15.9%	6.0%
MIT Killian Court	75.1%	19.1%	5.8%
Freiburg Bldg. 79	74.0%	19.4%	6.6%

Gaussian Proposal: Yes or No?

- Gaussian allow for efficient sampling
- Problematic in multi-model cases
- Laser-baser SLAM: 3-6% multi-modal distribution (for the datasets here)
- Gaussian proposals can lead to divergence
- Two-step sampling process overcomes this problem effectively and efficiently

Conclusion

- The ideas of FastSLAM can also be applied in the context of grid maps
- Improved proposals are essential
- Similar to scan-matching on a perparticle base
- Selective resamples reduces the risk of particle depletion
- Substantial reduction of the required number of particles

Literature

Grid-FastSLAM with Improved Proposals

- Grisetti, Stachniss, Burgard: Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, 2007
- Stachniss, Grisetti, Burgard, Roy. Analyzing Gaussian Proposal Distributions for Mapping with Rao-Blackwellized Particle Filters, 2007

GMapping

- Efficient open source implementation of the presented method (2005-2008)
- C++ Code available via
 svn co https://svn.openslam.org/data/svn/gmapping