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Motivation 

§  So far, we addressed landmark-based 
SLAM (EKF, SEIF, FastSLAM) 

§  We learned how to build grid maps 
assuming “known poses” 

Today: SLAM for building grid maps 
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Mapping With Raw Odometry 

Courtesy: Dirk Hähnel 
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Observation 

§  Assuming known poses fails! 

Questions 
§  Can we solve the SLAM problem if no 

pre-defined landmarks are available? 
§  Can we use the ideas of FastSLAM to 

build grid maps? 
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

path posterior 
(particle filter) 

map posterior 
(given the path) 
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Grid-based SLAM 

§  As with landmarks, the map depends 
on the poses of the robot during data 
acquisition 

§  If the poses are known, grid-based 
mapping is easy (“mapping with 
known poses”) 
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A Graphical Model for Grid-
Based SLAM 
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters 
§  Each particle represents a possible 

trajectory of the robot 
§  Each particle maintains its own map  
§  Each particle updates it using 

“mapping with known poses” 
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Particle Filter Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 
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Performance of Grid-based 
FastSLAM 1.0 
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Problem 
§  Too many samples are needed to 

sufficiently model the motion noise 
§  Increasing the number of samples is 

difficult as each map is quite large 

§  Idea: Improve the proposal to 
generate a better prediction. This 
reduces the required number of 
particles 
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Improved Proposal 

§  Compute an improved proposal that 
considers the most recent observation 

 
Goals: 
§  More precise sampling 
§  More accurate maps 
§  Less particles needed 
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For lasers                       
is typically peaked and  
dominates the product 

[Arulampalam et al., 01] 

The Optimal Proposal 
Distribution 
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Proposal Distribution 
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Proposal Distribution 
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Proposal Distribution 
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Proposal Distribution 

globally limits  
the area over  
which to integrate 
(odometry) 

locally limits  
the area over  
which to integrate 
(measurement) 
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Proposal Distribution 

global local 
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Proposal Distribution 

Gaussian approximation: 

How to sample from this term? 

with 
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Gaussian Proposal Distribution 

Approximate this equation by a Gaussian: 

Sampled points around  
the maximum 

maximum reported 
by a scan matcher 

Gaussian  
approximation 

Draw next 
generation of 
samples 
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Estimating the Parameters of 
the Gaussian for Each Particle 

xj are points sampled around the 
location x* to which the scan matching 
has converged to 
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Computing the Importance 
Weight 

[Arulampalam et al., 01] 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 
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Computing the Importance 
Weight 

Sampled points around the  
maximum of the likelihood 
function found by scan-matching 
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Improved Proposal 

§  The proposal adapts to the structure 
of the environment 
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Resampling 

§  Resampling at each step limits the 
“memory” of our filter 

§  Suppose we loose each time 25% of 
the particles, this may lead to: 

§  Goal: Reduce the resampling actions 



30 

Selective Resampling 

§  Resampling is necessary to achieve 
convergence 

§  Resampling is dangerous, since 
important samples might get lost 
(“particle depletion”) 

§  Resampling makes only sense if 
particle weights differ significantly 

§  Key question: When to resample? 
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Number of Effective Particles 

§  Empirical measure of how well the 
target distribution is approximated by 
samples drawn from the proposal 

 
§  nef  describes “the inverse variance of 

the normalized particle weights” 
§  For equal weights, the sample 

approximation is close to the target 
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Resampling with 

§  If our approximation is close to the 
target, no resampling is needed 

§  We only resample when        drops 
below a given threshold (       ) 
 

§  Note: weights need to be normalized 
[Doucet, ’98; Arulampalam, ’01] 
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Typical Evolution of 

visiting new 
areas closing the 

first loop 

second loop closure 

visiting 
known areas 
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Intel Lab 
§  15 particles 
§  four times faster 

than real-time 
P4, 2.8GHz 

§  5cm resolution 
during scan 
matching 

§  1cm resolution in 
final map 
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Intel Lab 
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Outdoor Campus Map 
§  30 particles 
§  250x250m2 

§  1.75 km 
(odometry) 

§  30cm resolution 
in final map 
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MIT Killian Court 

§ The “infinite-corridor-dataset” at MIT 
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MIT Killian Court 
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MIT Killian Court – Video 



40 

Real World Application 

§  This guy uses a similar technique…  
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Problems of Gaussian Proposals 

§  Gaussians are uni-model distributions 
§  In case of loop-closures, the likelihood 

function might be multi-modal 
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Problems of Gaussian Proposals 

§  Multi-modal likelihood function can 
cause filter divergence 
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Efficient Multi-Modal Sampling 
§  Approximate the likelihood in a better way! 

 
 
 
§  Sample from odometry first and the use  

this as the start point for scan matching 

odometry 

mode 1 mode 2 

odometry with uncertainty 
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The Two-Step Sampling Works! 

…with nearly zero overhead 
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Difference Between the Optimal 
Proposal and the Approximations 

Two-Step Sampling 

Gaussian Proposal 

+ 

+ 

+ 

+ 

+ 

+ 
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Is a Gaussian an Accurate 
Choice for the Proposal?  
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Gaussian Proposal: Yes or No? 

§  Gaussian allow for efficient sampling 
§  Problematic in multi-model cases 
§  Laser-baser SLAM: 3-6% multi-modal 

distribution (for the datasets here) 
§  Gaussian proposals can lead to 

divergence 
§  Two-step sampling process overcomes 

this problem effectively and efficiently 
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Conclusion 

§  The ideas of FastSLAM can also be 
applied in the context of grid maps 

§  Improved proposals are essential  
§  Similar to scan-matching on a per-

particle base 
§  Selective resamples reduces the risk 

of particle depletion 
§  Substantial reduction of the required 

number of particles 
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Techniques for Grid Mapping with Rao-
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GMapping 

§  Efficient open source implementation 
of the presented method (2005-2008) 

§  C++ Code available via  
svn co https://svn.openslam.org/data/svn/gmapping 


