Robot Mapping

Grid-based FastSLAM
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Motivation

= So far, we addressed landmark-based
SLAM (EKF, SEIF, FastSLAM)

= We |learned how to build grid maps
assuming “known poses”

Today: SLAM for building grid maps



Mapping With Raw Odometry

Courtesy: Dirk Hahnel



Observation

= Assuming known poses fails!

Questions

= Can we solve the SLAM problem if no
pre-defined landmarks are available?

= Can we use the ideas of FastSLAM to
build grid maps?



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observatlons & movements
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Grid-based SLAM

= As with landmarks, the map depends
on the poses of the robot during data
acquisition

= If the poses are known, grid-based
mapping is easy ("mapping with
known poses”™)



A Graphical Model for Grid-
Based SLAM
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters

= Each particle represents a possible
trajectory of the robot

= Fach particle maintains its own map

= Each particle updates it using
“mapping with known poses”




Particle Filter Example

map of particle 2 7
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Performance of Grid-based
FastSLAM 1.0




Problem

= Too many samples are needed to
sufficiently model the motion noise

= Increasing the number of samples is
difficult as each map is quite large

= Idea: Improve the proposal to
generate a better prediction. This
reduces the required number of
particles
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Improved Proposal

= Compute an improved proposal that
considers the most recent observation
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Goals:
= More precise sampling
= More accurate maps
= | ess particles needed
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The Optimal Proposal
Distribution [Arulampalam et al., 01]
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution

How to sample from this term?

Gaussian approximation:
p(z¢ | $7[52117m[i]7 thut) = N(N[i]a EM)
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Gaussian Proposal Distribution
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maximum reported —
by a scan matcher

Gaussian
approximation

Draw next
“.Q. generation of
Sampled points around samples

the maximum
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Estimating the Parameters of
the Gaussian for Each Particle
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x; are points sampled around the
location x* to which the scan matching
has converged to
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Computing the Importance

Weight
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[Arulampalam et al., 01]
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Computing the Importance
Weight
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Computing the Importance
Weight
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Computing the Importance
Weight
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Computing the Importance
Weight
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Improved Proposal

= The proposal adapts to the structure
of the environment

(a)
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Resampling

= Resampling at each step limits the
“memory” of our filter

= Suppose we loose each time 25% of
the particles, this may lead to:

—

= Goal: Reduce the resampling actions
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Selective Resampling

= Resampling is necessary to achieve
convergence

= Resampling is dangerous, since
important samples might get lost
(“particle depletion”)

= Resampling makes only sense if
particle weights differ significantly

= Key question: When to resample?
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Number of Effective Particles

= Empirical measure of how well the
target distribution is approximated by
samples drawn from the proposal

_ i)
neﬁ Z wt

= Neff describes “the inverse variance of
the normalized particle weights”

= For equal weights, the sample
approximation is close to the target
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Resampling with Mo ff

= If our approximation is close to the
target, no resampling is needed

= We only resample when Neff drops
below a given threshold (IN/2)

> (wy]>_2 ; N/2

1

= Note: weights need to be normalized

[Doucet, '98; Arulampalam, "01]
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Typical Evolution of 7.4
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Intel Lab
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= 15 particles

= four times faster
than real-time
P4, 2.8GHz

= 5cm resolution
during scan
matching

= 1cm resolution in
final map



Intel Lab
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Outdoor Campus Map

= 30 particles
= 250x250m?

= 1.75 km
(odometry)

= 30cm resolution
in final map
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MIT Killian Court

* The “infinite-corridor-dataset”
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MIT Killian Court — Video
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Real World Application

= This guy uses a similar technique...




Problems of Gaussian Proposals

= Gaussians are uni-model distributions

= In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02 r

0.01
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Problems of Gaussian Proposals

= Multi-modal likelihood function can
cause filter divergence
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Efficient Multi-Modal Sampling

= Approximate the likelihood in a better way!

odometry odometry with uncertainty

= Sample from odometry first and the use
this as the start point for scan matching
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The Two-Step Sampling Works!

likelihood
0.02 r

0.01
0 =

18.5
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Difference Between the Optimal
Proposal and the Approximations
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Is a Gaussian an Accurate

Choice for the Proposal?

Dataset Gauss | Non- Multi-
Gauss; | modal
1 mode| —
Intel Research Lab | 89.2% | 7.2% |/3.6%\
FHW Museum 84.5% | 10.4% [ 5.1%
Belgioioso 84.0% | 10.4% || 5.6%
MIT CSAIL 78.1% | 15.9% 1| 6.0%
MIT Killian Court | 75.1% | 19.1% \ 5.8%
Freiburg Bldg. 79 || 74.0% | 19.4% \ 6.6% /
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Gaussian Proposal: Yes or No?

= Gaussian allow for efficient sampling
= Problematic in multi-model cases

= | aser-baser SLAM: 3-6% multi-modal
distribution (for the datasets here)

= Gaussian proposals can lead to
divergence

= Two-step sampling process overcomes
this problem effectively and efficiently
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Conclusion

= The ideas of FastSLAM can also be
applied in the context of grid maps

= Improved proposals are essential

= Similar to scan-matching on a per-
particle base

= Selective resamples reduces the risk
of particle depletion

= Substantial reduction of the required
number of particles
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GMapping

= Efficient open source implementation
of the presented method (2005-2008)

= C++ Code available via
svn co https://svn.openslam.org/data/svn/gmapping
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