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Robot Mapping  

Least Squares  

Cyrill Stachniss 
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Three Main SLAM Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 

least squares  
approach to SLAM 
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Least Squares in General 

!  Approach for computing a solution for 
an overdetermined system 

!  “More equations than unknowns” 
!  Minimizes the sum of the squared 

errors in the equations 
!  Standard approach to a large set of 

problems 
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Least Squares History 

!  Method developed by Carl 
Friedrich Gauss in 1795 
(he was 18 years old) 

!  First showcase: predicting 
the future location of the 
asteroid Ceres in 1801 Courtesy:  

Astronomische 
Nachrichten, 1828 
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Problem 
!  Given a system described by a set of n 

observation functions  
!  Let 

!      be the state vector 
!      be a measurement of the state x 
!                    be a function which maps     to a 

predicted measurement 
!  Given n noisy measurements         about 

the state 
!  Goal: Estimate the state    which bests 

explains the measurements 
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Graphical Explanation 

state 
(unknown) 

predicted  
measurements 

real 
measurements 
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Example 

!     position of 3D features 
!      coordinates of the 3D features projected 

on camera images  
!  Estimate the most likely 3D position of the 

features based on the image projections 
(given the camera poses) 
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Error Function 
!  Error     is typically the difference between 

the predicted and actual measurement  
  

!  We assume that the error has zero mean 
and is normally distributed  

!  Gaussian error with information matrix 
!  The squared error of a measurement 

depends only on the state and is a scalar 
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Goal: Find the Minimum 

!  Find the state x* which minimizes the 
error given all measurements 

global error (scalar) 

squared error terms (scalar) 

error terms (vector) 
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Goal: Find the Minimum 

!  Find the state x* which minimizes the 
error given all measurements 

 

!  A general solution is to derive the 
global error function and find its nulls 

!  In general complex and no closed form 
solution 

 Numerical approaches 
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Assumption 

!  A “good” initial guess is available  
!  The error functions are “smooth” in 

the neighborhood of the (hopefully 
global) minima 

!  Then, we can solve the problem by 
iterative local linearizations 
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Solve Via Iterative Local 
Linearizations 
!  Linearize the error terms around the 

current solution/initial guess 
!  Compute the first derivative of the 

squared error function 
!  Set it to zero and solve linear system 
!  Obtain the new state (that is hopefully 

closer to the minimum) 
!  Iterate 
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Linearizing the Error Function 

!  Approximate the error functions 
around an initial guess x via Taylor 
expansion 

!  Reminder: Jacobian 
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Squared Error 

!  With the previous linearization, we 
can fix    and carry out the 
minimization in the increments  

!  We replace the Taylor expansion in 
the squared error terms: 
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Squared Error 

!  With the previous linearization, we 
can fix    and carry out the 
minimization in the increments  

!  We replace the Taylor expansion in 
the squared error terms: 
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Squared Error (cont.) 

!  All summands are scalar so the 
transposition has no effect 

!  By grouping similar terms, we obtain: 
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Global Error 

!  The global error is the sum of the 
squared errors terms corresponding to 
the individual measurements 

!  Form a new expression which 
approximates the global error in the 
neighborhood of the current solution  
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Global Error (cont.) 

with 
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Quadratic Form 

!  We can write the global error terms as 
a quadratic form in 

!  We need to compute the derivative of  
                w.r.t.       (given   )  
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Deriving a Quadratic Form 

!  Assume a quadratic form 
 

!  The first derivative is  
 

See: The Matrix Cookbook, Section 2.2.4  
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Quadratic Form 

!  We can write the global error terms as 
a quadratic form in 

!  The derivative of the approximated  
               w.r.t.       is then: 
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Minimizing the Quadratic Form 

!  Derivative of    

!  Setting it to zero leads to  

!  Which leads to the linear system 
 
!  The solution for the increment        is 
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Gauss-Newton Solution 

Iterate the following steps: 
!  Linearize around x and compute for 

each measurement 

!  Compute the terms for the linear 
system 

!  Solve the linear system 
  

!  Updating state 
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Example: Odometry Calibration 

!  Odometry measurements       
!  Eliminate systematic error through 

calibration 
!  Assumption: Ground truth odometry  

    is available 
!  Ground truth by motion capture, scan-

matching, or a SLAM system 
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Example: Odometry Calibration 

!  There is a function        which, given 
some bias parameters   , returns a an 
unbiased (corrected) odometry for the 
reading     as follows 

 
!  To obtain the correction function       , 

we need to find the parameters 
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Odometry Calibration (cont.) 

!  The state vector is 

!  The error function is 

!  Its derivative is: 

Does not depend on x, why? What are the consequences? e is linear, no need to iterate! 
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Questions 

!  How do the parameters look like if the 
odometry is perfect? 

!  How many measurements (at least) 
are needed to find a solution for the 
calibration problem? 

!     is symmetric. Why? 
!  How does the structure of the 

measurement function affects the 
structure of    ?  
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How to Efficiently Solve the 
Linear System? 
!  Linear system 
!  Can be solved by matrix inversion  

(in theory) 
!  In practice: 

! Cholesky factorization 
! QR decomposition 
!  Iterative methods such as conjugate 

gradients (for large systems) 
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Cholesky Decomposition for 
Solving a Linear System 
!      symmetric and positive definite 
!  System to solve 
!  Cholesky leads to                  with    

being a lower triangular matrix 
!  Solve first 

!  an then  
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Gauss-Newton Summary  
Method to minimize a squared error: 
!  Start with an initial guess 
!  Linearize the individual error functions 
!  This leads to a quadratic form 
!  One obtains a linear system by 

settings its derivative to zero 
!  Solving the linear systems leads to a 

state update 
!  Iterate 
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Relation to Probabilistic State 
Estimation 
!  So far, we minimized an error function 
!  How does this relate to state 

estimation in the probabilistic sense? 
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General State Estimation  

!  Bayes rule, independence and Markov 
assumptions allow us to write 
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Log Likelihood 

!  Written as the log likelihood, leads to 
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Gaussian Assumption 

!  Assuming Gaussian distributions 
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Log of a Gaussian 

!  Log likelihood of a Gaussian  
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Error Function as Exponent  

!  Log likelihood of a Gaussian  

!  is up to a constant equivalent to the 
error functions used before 
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Log Likelihood with Error Terms  

!  Assuming Gaussian distributions 
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Maximizing the Log Likelihood  

!  Assuming Gaussian distributions 

!  Maximizing the log likelihood leads to 
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Minimizing the Squared Error  
is Equivalent to Maximizing the 
Log Likelihood of Independent 

Gaussian Distributions 

  with individual error terms for the   
  motions, measurements, and prior:  
 

40 

Summary 
!  Technique to minimize squared error 

functions 
!  Gauss-Newton is an iterative approach 

for non-linear problems 
!  Uses linearization (approximation!) 
!  Equivalent to maximizing the log 

likelihood of independent Gaussians 
!  Popular method in a lot of disciplines 
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Literature 
Least Squares and Gauss-Newton 
!  Basically every textbook on numeric 

calculus or optimization 
!  Wikipedia (for a brief summary) 
Relation to Probability Theory 
!  Thrun et al.: “Probabilistic Robotics”, 

Chapter 11.4 


