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Robot Mapping  

Least Squares Approach 
to SLAM  

Cyrill Stachniss 
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Three Main SLAM Paradigms 

Kalman 
filter 

Particle 
filter 

Graph-
based 

least squares  
approach to SLAM 

3 

Least Squares in General 

!  Approach for computing a solution for 
an overdetermined system 

!  “More equations than unknowns” 
!  Minimizes the sum of the squared 

errors in the equations 
!  Standard approach to a large set of 

problems 
 

Today: Application to SLAM 
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Robot pose Constraint  

Graph-Based SLAM 

!  Constraints connect the poses of the 
robot while it is moving 

!  Constraints are inherently uncertain 
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Graph-Based SLAM 

!  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

!  Use a graph to represent the problem 
!  Every node in the graph corresponds 

to a pose of the robot during mapping 
!  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

!  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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Graph-Based SLAM in a Nutshell 
!  Every node in the 

graph corresponds 
to a robot position 
and a laser 
measurement 

!  An edge between 
two nodes 
represents a spatial 
constraint between 
the nodes 
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by correcting the 
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Graph-Based SLAM in a Nutshell 

!  Once we have the 
graph, we determine 
the most likely map 
by correcting the 
nodes 

 … like this 
!  Then, we can render a 

map based on the 
known poses 
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The Overall SLAM System 
!  Interplay of front-end and back-end 
!  A consistent map helps to determine new 

constraints by reducing the search space 
!  This lecture focuses only on the optimization 

Graph 
Construction 
(Front-End) 

Graph 
Optimization 
(Back-End) 

raw 
data 

graph  
(nodes & edges) 

node positions 

today 
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The Graph 

!  It consists of n nodes   
!  Each     is a 2D or 3D transformation 

(the pose of the robot at time ti) 
!  A constraint/edge exists between the 

nodes     and     if… 
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Create an Edge If… (1) 

!  …the robot moves from     to 
!  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

!  …the robot observes the same part of 
the environment from     and from 

!  Construct a virtual measurement 
about the position of     seen from  
 

xi 

Measurement from   i 

xj 

Measurement from   
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Create an Edge If… (2) 

!  …the robot observes the same part of 
the environment from     and from 

!  Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

!  Transformations can be expressed 
using homogenous coordinates 

!  Odometry-Based edge 
 

!  Observation-Based edge 

How node i sees node j 
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Homogenous Coordinates 

!  N-dim space expressed in N+1 dim 
!  4D space for modeling the 3D space 
!  To HC:  
!  Backwards: 
!  Vector in HC: 
!  Translation: 

!  Rotation: 
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The Edge Information Matrices 

!  Observations are affected by noise 
!  Information matrix      for each edge 

to encode its uncertainty 
!  The “bigger”     , the more the edge 

“matters” in the optimization  
 

Questions 
!  What do the information matrices look like 

in case of scan-matching vs. odometry? 
!  What should these matrices look like in a 

long,  featureless corridor? 
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Pose Graph 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Pose Graph 

!  Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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Least Squares SLAM 

!  This error function looks suitable for 
least squares error minimization 
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Least Squares SLAM 

!  This error function looks suitable for 
least squares error minimization 

 
Questions: 
!  What is the state vector? 

 

!  Specify the error function! 
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Least Squares SLAM 

!  This error function looks suitable for 
least squares error minimization 

 
Questions: 
!  What is the state vector? 

 

!  Specify the error function! 

One block for each  
node of the graph 
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The Error Function 
!  Error function for a single constraint  

!  Error as a function of the whole state vector 

!  Error takes a value of zero if 

xj in the reference of xi measurement 
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Gauss-Newton: The Overall 
Error Minimization Procedure  
!  Define the error function 
!  Linearize the error function  
!  Compute its derivative  
!  Set the derivative to zero 
!  Solve the linear system 
!  Iterate this procedure until 

convergence 
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Linearizing the Error Function 

!  We can approximate the error 
functions around an initial guess    
via Taylor expansion 

with 
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Derivative of the Error Function 

!  Does one error term           depend on 
all state variables? 
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Derivative of the Error Function 

!  Does one error term           depend on 
all state variables? 

       No, only on     and   
!  Is there any consequence on the 

structure of the Jacobian? 
 Yes, it will be non-zero only in the   
 rows corresponding to     and 
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Jacobians and Sparsity 

!  Error           depends only on the two 
parameter blocks     and 

 
 
!  The Jacobian will be 0 everywhere but 

in the columns of     and  
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Consequences of the Sparsity 

!  We need to compute the coefficient 
vectors and the coefficient matrices: 

 
!  The sparse structure of      will result 

in a sparse structure of   
!  This structure reflects the adjacency 

matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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Consequences of the Sparsity 

!  An edge contributes to the linear 
system via      and   

!  The coefficient vector is: 

!  It is non-zero only at the indices 
corresponding to     and  
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Consequences of the Sparsity  

!  The coefficient matrix of an edge is: 

 

!  Is non zero only in the blocks i,j.  
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Sparsity Summary 

!  An edge ij contributes only to the  
!  ith and the jth block of   
!  to the blocks ii, jj, ij and ji of   

!  The resulting system is sparse 
!  It can be computed by summing up 

the contribution of each edge 
!  Efficient solvers can be used 

!  Sparse Cholesky decomposition  
! Conjugate gradients 
! … many others 
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The Linear System 
!  Vector of the states increments: 

!  Coefficient vector: 

!  System Matrix: 

!  The linear system is a block system with  
n blocks, one for each node of the graph 
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Building the Linear System 

For each constraint: 
!  Compute error 
!  Compute the blocks of the Jacobian: 

 
!  Update the coefficient vector: 
 
!  Update the system matrix: 
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Algorithm 
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Example on the Blackboard 
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Trivial 1D Example 

!  Two nodes and one observation 

BUT                    ??? 
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What Went Wrong? 

!  The constraint specifies a relative 
constraint between both nodes 

!  Any poses for the nodes would be fine  
as long a their relative coordinates fit 

!  One node needs to be fixed 

constraint 
that sets  

x1=0 
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Real World Examples 
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Conclusions 

!  The back-end part of the SLAM 
problem can be effectively solved with 
Gauss-Newton error minimization 

!  The     matrix is typically sparse 
!  This sparsity allows for efficiently 

solving the linear system 
!  One of the state-of-the-art solutions  

for computing maps  
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A Note For The Next Exercise 
!  Consider a 2D graph where each node is 

parameterized as 
!  Expressed as a transformation 
!  Consider the error function 

!  Compute the blocks of the Jacobian J 

!  Hint: write the error function by using 
rotation matrices and translation vectors 
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