Robot Mapping

Least Squares Approach
to SLAM

Cyrill Stachniss %

Three Main SLAM Paradigms

Kalman Particle | Graph-
filter filter based

' 4

least squares
approach to SLAM

Least Squares in General

= Approach for computing a solution for
an overdetermined system

= “"More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Today: Application to SLAM

Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain

P Robot pose ===p Constraint

Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses

A
4y
A

P> Robot pose «««p Constraint

Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff

7

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff

8

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

10

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

= Then, we can render a
map based on the
known poses

11

The Overall SLAM System

= Interplay of front-end and back-end

= A consistent map helps to determine new
constraints by reducing the search space

* This lecture focuses only on the optimization

node positions
! 1

Graph Graph

1;%. C:_nstr;u;ti;n m— ‘ Ogtin:zzti;)n
ont-En ack-En

(Fr) (nodes & edges) (¢)

Itoday 12

The Graph

= It consists of n nodes x = x1:,

= Fach x; is a 2D or 3D transformation
(the pose of the robot at time ;)

= A constraint/edge exists between the
nodes x; andx; if...

ey
z Y
\ y
A
-~ 13

Create an Edge If... (1)

= ...the robot moves from x; to x;4 1
= Edge corresponds to odometry

o—@®
Xq \ Xi+1

The edge represents the
odometry measurement

14

Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of xX; seen from x;

© O
X; X
Measurement from x; Measurement from x;

15

Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;

o

X5 Yﬂ

Edge represents the position of x;seen
from x; based on the observation

16

Transformations

= Transformations can be expressed
using homogenous coordinates

= Odometry-Based edge
(X; ' Xiq1)
= Observation-Based edge

(X;1X;)

How node i sees node j

17

Homogenous Coordinates

= N-dim space expressed in N+1 dim

= 4D space for modeling the 3D space

= To HC: (:c,y,z)T — (z,v, 2, l)T

= Backwards: (z.y.zw)" - (.2 57

= Vector in HC: v = (,y, 2, w)?

= Translation: ()
_ y

OO O
O OO
el NoNe)

&~ ok ok

= Rotation:

_ R3D o
=% 7)

18

The Edge Information Matrices

= Observations are affected by noise

= Information matrix 2;; for each edge
to encode its uncertainty

= The “bigger” ;;, the more the edge

“matters” in the optimization

Questions
= What do the information matrices look like
in case of scan-matching vs. odometry?

= What should these matrices look like in a

long, featureless corridor?
19

Pose Graph

observation (745, ;) —— edge

of X;fromx;
e;; (x4, %;)

X~ O
XJ error
nodes
according to
the graph

20

Pose Graph

observation (zi5,Q;) —— edge
of X;fromx;

e;j (x4, x;)

Xi\/’x
j
nodes

according to
the graph

error

= Goal: x* = arg}Enin Zegﬁijeij
Z] 21

Least Squares SLAM

= This error function looks suitable for
least squares error minimization

x* = arg}EninE eg}(Xi,Xj)Qijeij(Xiaxj)
]
= argmin > ef (x) Qe (x)
X
k

22

Least Squares SLAM

= This error function looks suitable for
least squares error minimization

*

_ : T
x" = argmin Zk: ej, (x)Qer(x)

Questions:
= What is the state vector?

= Specify the error function!

23

Least Squares SLAM

= This error function looks suitable for
least squares error minimization

*

_ : T
x* = argmin Zk: ej. (x)Qper(x)

Questions:
= What is the state vector?

One block for each
T
x = (x] x% .- xﬁ/ node of the graph

= Specify the error function!

24

The Error Function

= Error function for a single constraint
e;;(xi,X;) = tQV(El(Xflxj))
t

| measurement| | x; in the reference of x;

= Error as a function of the whole state vector
ei;(x) = t2v(Z; 1 (X; X))

= Error takes a value of zero if
Zij = (X;'X;)

25

Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

* Linearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= Jterate this procedure until
convergence

26

Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) >~ eij(x) + JijAX

with Jz'j _ aeg’(x)
X

27

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

28

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;

29

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;
= Is there any consequence on the
structure of the Jacobian?

30

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
=) No, only on x; and Xx;

= s there any consequence on the
structure of the Jacobian?

= Yes, it will be non-zero only in the
rows corresponding to x; and x;
Oeij(x) _ (0...89ia‘(Xi)...39ij(Xj)...0)
% ox; 0X;
Jy = (0"‘Aij"‘Bz’j"'0>

31

Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and x;

e;i(x) = e;;(x4,X;)

= The Jacobian will be 0 everywhere but
in the columns of x; and x;

Jij -

32

Consequences of the Sparsity

= We need to compute the coefficient
vectors and the coefficient matrices:

bl = Y bl = Y el0;J;
H = > H; = Y J,0)

= The sparse structure of J;; will result
in a sparse structure of H

= This structure reflects the adjacency
matrix of the graph

33

Illustration of the Structure

_1TO. .
bij = Ji;8ijei;

—> Non-zero only at x; and x;

~

34

Illustration of the Structure
bij = ILQ e

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and x;
Hyj = J9;3

35

Illustration of the Structure
bij = JLQ e

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and x;
Hyj = 93

... and at
the blocks

i

36

Illustration of the Structure
b =73 by

v
|+I+”+| |

ij
.+ . +“.+ . :> .
37

Consequences of the Sparsity

= An edge contributes to the linear
system via b;; and H;;
= The coefficient vector is:

= It is non-zero only at the indices
corresponding to x; and x;

38

Consequences of the Sparsity

= The coefficient matrix of an edge is:
Hj; = 35

T

BIQA;; BBy

= Is non zero only in the blocks i,j.
39

Sparsity Summary

= An edge ij contributes only to the
= ith and the j* block of by;
= to the blocks ii, jj, ij and ji of Hij
= The resulting system is sparse
= It can be computed by summing up
the contribution of each edge
= Efficient solvers can be used
= Sparse Cholesky decomposition
= Conjugate gradients

= ... many others
40

The Linear System

= Vector of the states increments:
AxT = (Ax{ Axg AxZ)
= Coefficient vector:
bT = (BT 5 - BF)
= System Matrix:

H1l |12 ... gln
—_ 2l {22 ... g2»

* The linear system is a block system with
n blocks, one for each node of the graph

41

Building the Linear System

For each constraint:
= Compute error e;; = t2v(Z;;' (X; 'X;))
= Compute the blocks of the Jacobian:
o de(x;,%;) B.. — de(x;, %)
Y ox; 4 0%
= Update the coefficient vector:
b} + = e[, ;A bl + = e],Q;;B;
= Update the system matrix:
H'+ = ALOQ;A;; HY+ = ATQ;By;
H/'+ = B QA4 0+ = BLQ,;;B;

A

42

Algorithm

—_

optimize(x):

while (!converged)
(H,b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
x =X+ Ax

end

return x

43

Example on the Blackboard

44

Trivial 1D Example

= Two nodes and one observation
x = (z122)7 =(00)

zio = 1
Q = 2
el = =zi2—(@2—21)=1-(0-0)=1
Jio = (1 -1)
bir = efr,12J10=(2 - 2)
Hio = J{QQJ12:(_22 _22>
Ax = —HJbio

BUT det(H) = 02?7

What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

= One node needs to be fixed
constraint
H = (22 _22) (ég) that sets
N x;=0

Ax = —H_1b12

Ax = (01T
46

Real World Examples

47

Conclusions

= The back-end part of the SLAM
problem can be effectively solved with
Gauss-Newton error minimization

= The H matrix is typically sparse

= This sparsity allows for efficiently
solving the linear system

= One of the state-of-the-art solutions
for computing maps

48

A Note For The Next Exercise

Consider a 2D graph where each node is
parameterized as x! = (z; v; 6;)
Expressed as a transformation X; = v2t(x;)
Consider the error function

eij = t2v(Z 1 (X7 1X;))
Compute the blocks of the Jacobian J
_ de(xi, x;) - De(xi x;)
T axg U o
Hint: write the error function by using
rotation matrices and translation vectors

RT(RT(t; —t;) —t..
e (x4, %;) = (i 9;(_391_@9)” ZJ))

A

Literature

Least Squares SLAM

= Grisetti, Kimmerle, Stachniss,
Burgard: “A Tutorial on Graph-based
SLAM”, 2010

50

