Robot Mapping

Least Squares Approach to SLAM

Cyrill Stachniss
Three Main SLAM Paradigms

- Kalman filter
- Particle filter
- Graph-based

least squares approach to SLAM
Least Squares in General

- Approach for computing a solution for an **overdetermined system**
- “More equations than unknowns”
- Minimizes the **sum of the squared errors** in the equations
- Standard approach to a large set of problems

Today: Application to SLAM
Graph-Based SLAM

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain
Graph-Based SLAM

- Observing previously seen areas generates constraints between non-successive poses
Idea of Graph-Based SLAM

- Use a **graph** to represent the problem
- Every **node** in the graph corresponds to a pose of the robot during mapping
- Every **edge** between two nodes corresponds to a spatial constraint between them

Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints
Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement.
- An edge between two nodes represents a spatial constraint between the nodes.

KUKA Halle 22, courtesy of P. Pfaff
Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement.
- An edge between two nodes represents a spatial constraint between the nodes.

KUKA Halle 22, courtesy of P. Pfaff
Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes.
Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes
 ... like this
Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes...
 ... like this
- Then, we can render a map based on the known poses
The Overall SLAM System

- Interplay of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space
- This lecture focuses only on the optimization

Graph Construction (Front-End)

- raw data

Graph Optimization (Back-End)

- node positions

- graph (nodes & edges)

today
The Graph

- It consists of n nodes $x = x_1:n$
- Each x_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint/edge exists between the nodes x_i and x_j if...
Create an Edge If... (1)

- ...the robot moves from x_i to x_{i+1}
- Edge corresponds to odometry

The edge represents the \textbf{odometry} measurement
Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a **virtual measurement** about the position of x_j seen from x_i
Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a **virtual measurement** about the position of x_j seen from x_i

Edge represents the position of x_j seen from x_i based on the **observation**
Transformations

- Transformations can be expressed using **homogenous coordinates**
- Odometry-Based edge

\[(X_i^{-1}X_{i+1})\]

- Observation-Based edge

\[(X_i^{-1}X_j)\]

How node i sees node j
Homogenous Coordinates

- N-dim space expressed in N+1 dim
- 4D space for modeling the 3D space
- To HC: \((x, y, z)^T \rightarrow (x, y, z, 1)^T\)
- Backwards: \((x, y, z, w)^T \rightarrow (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T\)
- Vector in HC: \(v = (x, y, z, w)^T\)
- Translation:
 \[
 T = \begin{pmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
 \end{pmatrix}
 \]
- Rotation:
 \[
 R = \begin{pmatrix}
 R^{3D} & 0 \\
 0 & 1
 \end{pmatrix}
 \]
The Edge Information Matrices

- Observations are affected by noise
- Information matrix Ω_{ij} for each edge to encode its uncertainty
- The “bigger” Ω_{ij}, the more the edge “matters” in the optimization

Questions

- What do the information matrices look like in case of scan-matching vs. odometry?
- What should these matrices look like in a long, featureless corridor?
Pose Graph

observation of x_j from x_i

$\langle z_{ij}, \Omega_{ij} \rangle$

element

e $e_{ij}(x_i, x_j)$

nodes according to the graph

nodes

error
Pose Graph

- Goal: \(\mathbf{x}^* = \arg\min_x \sum_{ij} e_{ij}^T \Omega_{ij} e_{ij} \)
Least Squares SLAM

- This error function looks suitable for least squares error minimization

\[
x^* = \arg\min_x \sum_{ij} e_{ij}^T(x_i, x_j) \Omega_{ij} e_{ij}(x_i, x_j)
\]

\[
= \arg\min_x \sum_{k} e_k^T(x) \Omega_k e_k(x)
\]
Least Squares SLAM

- This error function looks suitable for least squares error minimization

\[x^* = \arg\min_x \sum_k e_k^T(x)\Omega_k e_k(x) \]

Questions:
- What is the state vector?
- Specify the error function!
Least Squares SLAM

- This error function looks suitable for least squares error minimization
 \[x^* = \arg\min_x \sum_k e_k^T(x)\Omega_k e_k(x) \]

Questions:
- What is the state vector?
 \[x^T = \left(x_1^T \ x_2^T \ \cdots \ x_n^T \right) \]
- Specify the error function!

One block for each node of the graph
The Error Function

- Error function for a single constraint
 \[e_{ij}(x_i, x_j) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j)) \]

- Error as a function of the whole state vector
 \[e_{ij}(x) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j)) \]

- Error takes a value of zero if
 \[Z_{ij} = (X_i^{-1}X_j) \]
Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence
Linearizing the Error Function

- We can approximate the error functions around an initial guess x via Taylor expansion

\[e_{ij}(x + \Delta x) \approx e_{ij}(x) + J_{ij} \Delta x \]

with \[J_{ij} = \frac{\partial e_{ij}(x)}{\partial x} \]
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?

 No, only on x_i and x_j
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - No, only on x_i and x_j

- Is there any consequence on the structure of the Jacobian?
Derivative of the Error Function

- Does one error term \(e_{ij}(x) \) depend on all state variables?

 Yes, only on \(x_i \) and \(x_j \)

- Is there any consequence on the structure of the Jacobian?

 Yes, it will be non-zero only in the rows corresponding to \(x_i \) and \(x_j \)

\[
\frac{\partial e_{ij}(x)}{\partial x} = \begin{pmatrix}
0 & \ldots & \frac{\partial e_{ij}(x_i)}{\partial x_i} & \ldots & \frac{\partial e_{ij}(x_j)}{\partial x_j} & \ldots & 0
\end{pmatrix}
\]

\[
J_{ij} = \begin{pmatrix}
0 & \ldots & A_{ij} & \ldots & B_{ij} & \ldots & 0
\end{pmatrix}
\]
Jacobians and Sparsity

- Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

 $$e_{ij}(x) = e_{ij}(x_i, x_j)$$

- The Jacobian will be 0 everywhere but in the columns of x_i and x_j

 $${J}_{ij} = \begin{pmatrix} 0 & \frac{\partial e(x_i)}{\partial x_i} & 0 & \frac{\partial e(x_j)}{\partial x_j} & 0 & \cdots & 0 \\ \frac{\partial e(x_i)}{\partial x_i} & A_{ij} & 0 & \frac{\partial e(x_j)}{\partial x_j} & B_{ij} & 0 & \cdots \end{pmatrix}$$
Consequences of the Sparsity

- We need to compute the coefficient vectors and the coefficient matrices:

\[b^T = \sum_{ij} b^T_{ij} = \sum_{ij} e^T_{ij} \Omega_{ij} J_{ij} \]

\[H = \sum_{ij} H_{ij} = \sum_{ij} J^T_{ij} \Omega_{ij} J_{ij} \]

- The sparse structure of \(J_{ij} \) will result in a sparse structure of \(H \)

- This structure reflects the adjacency matrix of the graph
Illustration of the Structure

\[b_{ij} = J_{ij}^T \Omega_{ij} e_{ij} \]

Non-zero only at \(x_i \) and \(x_j \)
Illustration of the Structure

\[b_{ij} = J_{ij}^T \Omega_{ij} e_{ij} \]

Non-zero only at \(x_i \) and \(x_j \)

\[H_{ij} = J_{ij}^T \Omega_{ij} J_{ij} \]

Non-zero on the main diagonal at \(x_i \) and \(x_j \)
Illustration of the Structure

\[b_{ij} = J_{ij}^T \Omega_{ij} e_{ij} \]

Non-zero only at \(x_i \) and \(x_j \)

Non-zero on the main diagonal at \(x_i \) and \(x_j \)

\[H_{ij} = J_{ij}^T \Omega_{ij} J_{ij} \]

... and at the blocks \(ij, ji \)
Illustration of the Structure

\[b = \sum_{ij} b_{ij} \]

\[H = \sum_{ij} H_{ij} \]
Consequences of the Sparsity

- An edge contributes to the linear system via b_{ij} and H_{ij}

- The coefficient vector is:

$$b_{ij}^T = e_{ij}^T \Omega_{ij} J_{ij}$$

$$= e_{ij}^T \Omega_{ij} \begin{pmatrix} 0 \cdots A_{ij} \cdots B_{ij} \cdots 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \cdots e_{ij}^T \Omega_{ij} A_{ij} \cdots e_{ij}^T \Omega_{ij} B_{ij} \cdots 0 \end{pmatrix}$$

- It is non-zero only at the indices corresponding to x_i and x_j
Consequences of the Sparsity

- The coefficient matrix of an edge is:

\[
H_{ij} = J_{ij}^T \Omega_{ij} J_{ij} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ A_{ij}^T & & & B_{ij}^T \\ \vdots & & & \vdots \\ \end{pmatrix} \Omega_{ij} \begin{pmatrix} \cdots A_{ij} \cdots B_{ij} \cdots \end{pmatrix}
\]

- Is non zero only in the blocks i,j.

39
Sparsity Summary

- An edge ij contributes only to the
 - i^{th} and the j^{th} block of b_{ij}
 - to the blocks ii, jj, ij and ji of H_{ij}
- The resulting system is sparse
- It can be computed by summing up the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition
 - Conjugate gradients
 - ... many others
The Linear System

- Vector of the states increments:
 \[\Delta x^T = \begin{pmatrix} \Delta x_1^T & \Delta x_2^T & \cdots & \Delta x_n^T \end{pmatrix} \]

- Coefficient vector:
 \[b^T = \begin{pmatrix} b_1^T & b_2^T & \cdots & b_n^T \end{pmatrix} \]

- System Matrix:
 \[H = \begin{pmatrix}
 \bar{H}^{11} & \bar{H}^{12} & \cdots & \bar{H}^{1n} \\
 \bar{H}^{21} & \bar{H}^{22} & \cdots & \bar{H}^{2n} \\
 \vdots & \ddots & \ddots & \vdots \\
 \bar{H}^{n1} & \bar{H}^{n2} & \cdots & \bar{H}^{nn}
\end{pmatrix} \]

- The linear system is a block system with \(n \) blocks, one for each node of the graph.
Building the Linear System

For each constraint:

- Compute error \(e_{ij} = t2v(Z_{ij}^{-1}(X_i^{-1}X_j)) \)
- Compute the blocks of the Jacobian:
 \[
 A_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_i} \quad B_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_j}
 \]
- Update the coefficient vector:
 \[
 \bar{b}_i^T + = e_{ij}^T \Omega_{ij} A_{ij} \quad \bar{b}_j^T + = e_{ij}^T \Omega_{ij} B_{ij}
 \]
- Update the system matrix:
 \[
 \bar{H}_{ii}^{ii} + = A_{ij}^T \Omega_{ij} A_{ij} \quad \bar{H}_{ij}^{ij} + = A_{ij}^T \Omega_{ij} B_{ij}
 \]
 \[
 \bar{H}_{ji}^{ji} + = B_{ij}^T \Omega_{ij} A_{ij} \quad \bar{H}_{jj}^{jj} + = B_{ij}^T \Omega_{ij} B_{ij}
 \]
Algorithm

1: optimize(x):

2: while (!converged)
3: (H, b) = buildLinearSystem(x)
4: Δx = solveSparse(HΔx = −b)
5: x = x + Δx
6: end
7: return x
Example on the Blackboard
Trivial 1D Example

- Two nodes and one observation

\[
\begin{align*}
\mathbf{x} &= (x_1 \ x_2)^T = (0 \ 0) \\
z_{12} &= 1 \\
\Omega &= 2 \\
e_{12} &= z_{12} - (x_2 - x_1) = 1 - (0 - 0) = 1 \\
J_{12} &= (1 \ -1) \\
b_{12}^T &= e_{12}^T \Omega_{12} J_{12} = (2 \ -2) \\
H_{12} &= J_{12}^T \Omega J_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \\
\Delta \mathbf{x} &= -H_{12}^{-1} b_{12} \\
\text{BUT } \det(\mathbf{H}) &= 0 ????
\end{align*}
\]
What Went Wrong?

- The constraint specifies a relative constraint between both nodes.
- Any poses for the nodes would be fine as long as their relative coordinates fit.
- One node needs to be fixed.

\[
H = \begin{pmatrix}
2 & -2 \\
-2 & 2
\end{pmatrix} + \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]

\[
\Delta x = -H^{-1}b_{12}
\]

\[
\Delta x = (0 1)^T
\]

Constraint that sets \(x_1 = 0\)
Real World Examples
Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton error minimization.
- The H matrix is typically sparse.
- This sparsity allows for efficiently solving the linear system.
- One of the state-of-the-art solutions for computing maps.
A Note For The Next Exercise

- Consider a 2D graph where each node is parameterized as $x_i^T = (x_i \ y_i \ \theta_i)$
- Expressed as a transformation $X_i = v2t(x_i)$
- Consider the error function $e_{ij} = t2v(Z_{ij}^{-1}(X_i^{-1}X_j))$
- Compute the blocks of the Jacobian J

 $$A_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_i} \quad B_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_j}$$

- Hint: write the error function by using rotation matrices and translation vectors

 $$e_{ij}(x_i, x_j) = \begin{pmatrix} R_{ij}^T (R_i^T (t_j - t_i) - t_{ij}) \\
 \theta_j - \theta_i - \theta_{ij} \end{pmatrix}$$
Literature

Least Squares SLAM

- Grisetti, Kümmerle, Stachniss, Burgard: “A Tutorial on Graph-based SLAM”, 2010