Robot Mapping

Least Squares Approach
to SLAM

Cyrill Stachniss

) UNI
£f FREIBURG

Three Main SLAM Paradigms

Kalman Particle | Graph-
filter filter based

4

least squares
approach to SLAM

Least Squares in General

= Approach for computing a solution for
an overdetermined system

= "More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Today: Application to SLAM

Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain

P Robot pose Constraint

Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses

| »- A
&y
y 5

=]

P Robot pose Constraint

Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff 7

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

10

Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

= Then, we can render a
map based on the
known poses

11

The Overall SLAM System

= Interplay of front-end and back-end

= A consistent map helps to determine new
constraints by reducing the search space

= This lecture focuses only on the optimization

node positions
v |

Graph Graph
-2 Construction Optimization
(Front-End) graph (Back-End)
(nodes & edges)

Itoday 12

The Graph

= [t consists of n nodes X = X1,

= EFach x; is a 2D or 3D transformation
(the pose of the robot at time ¢;)

= A constraint/edge exists between the
nodes X; andXx; if... N

13

Create an Edge If... (1)

= ..the robot moves from x; to x; 1
= Edge corresponds to odometry

O—0O
X \ Xi4+1

The edge represents the
odometry measurement

14

Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from X j

= Construct a virtual measurement
about the position of X; seen from x;

O O

X3 X j

Measurement from x; Measurement from X
15

Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from X j

= Construct a virtual measurement
about the position of X; seen from x;

@

X,LQ Yj

Edge represents the position of X jseen
from X, based on the observation

16

Transformations

= Transformations can be expressed
using homogenous coordinates

= Odometry-Based edge
(X1 X41)
= Observation-Based edge

(X;1X;)

How node i sees node j

17

Homogenous Coordinates

= N-dim space expressed in N+1 dim

= 4D space for modeling the 3D space

= To HC: (x,y,z)T — (:c,y,z,l)T

* Backwards: (z,y,2w)" = (-, %)"

= Vector in HC: v = (, vy, 2, w)?’

= Translation: ()
_ y

oOoOoomr
oNoN e
O~ OO

~

= Rotation:

. R3DO
= 7

18

The Edge Information Matrices

= Observations are affected by noise

= Information matrix 2;; for each edge
to encode its uncertainty

= The "bigger” 2;;, the more the edge
“matters” in the optimization

Questions
= What do the information matrices look like
in case of scan-matching vs. odometry?

= What should these matrices look like in a
long, featureless corridor?

19

Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e;; (X, X;)

J
nodes

according to
the graph

error

20

Pose Graph

observation (zij,9%;) —— edge
of X;fromX;

e; ;i (X;,X;)
X, \/ (}%\
nodes
according to
the graph

: T
= Goal: x* = aramin el Qe
gX % (] 171)])

error

21

Least Squares SLAM

= This error function looks suitable for

least squares error minimization

X

*

arngin E eg;(xi,xj)ﬂijeij(xi,xj)
]
: T
argmin Q)
gmi Ek e (x)Qrer(x)

22

Least Squares SLAM

= This error function looks suitable for
least squares error minimization

ES

x* = argmin)_ el (x)Qep(x)
X
k

Questions:
= What is the state vector?

= Specify the error function!

23

Least Squares SLAM

= This error function looks suitable for
least squares error minimization

ES

x* = argmin)_ el (x)Qep(x)
X
k

Questions:
= What is the state vector?

One block for each
T
T = (X{ x4 ... Xﬁ/ node of the graph

= Specify the error function!

24

The Error Function

= Error function for a single constraint
e; (X, %) = tQV(EZl(XZ-_lXj))

I

measurement

I

x; in the reference of x;

= Error as a function of the whole state vector

eij(x) = t2v(Z; ;1 (X;1X;))

= Error takes a value of zero if

Zi; = (X;'X;)

25

Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

= | inearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= Jterate this procedure until
convergence

26

Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) ~ ez-j(x) + JZ]AX

oe;;(x)

with JZ] p— a
X

27

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

28

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;

29

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;

= s there any consequence on the
structure of the Jacobian?

30

Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

m) No, only on x; and x;
= s there any consequence on the
structure of the Jacobian?

m Yes, it will be non-zero only in the
rows corresponding to x; and X;

0e;;(x) — (0...3ez'j(Xz') . 0eyx5) .0)

aX 3Xi . ox g

Jij = (O"'Az’j"'Bij"'O)

31

Jacobians and Sparsity

= Errore;;(x) depends only on the two
parameter blocks x; and x;

e;i(x) = e;;(x;,x;)

= The Jacobian will be 0 everywhere but
in the columns of x; and Xx;

32

Consequences of the Sparsity

= We need to compute the coefficient
vectors and the coefficient matrices:

Zb ZeTQ Ji;
ZHZJ — ZJz;QJij

i
= The sparse structure of J;; will result
in @ sparse structure of H

= This structure reflects the adjacency
matrix of the graph

33

Illustration of the Structure

_ 1T
|

N

—

Non-zero only at x; and x;

34

Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

—>

35

Illustration of the Structure

_ 1T

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and Xx;
J

... and at
the blocks

ijj

36

Illustration of the Structure
b=> by

i
I+I+m+| I

i
37

Consequences of the Sparsity

= An edge contributes to the linear
system via b;; and H;;
= The coefficient vector is:
bi; = e};Q;Ji;
— e%Qij(o...Aij...Bij...o)
— (O---eg;-ﬂijA,,;j---eTQ--B o)

= [t is non-zero only at the indices
corresponding to x; and x;

38

Consequences of the Sparsity

= The coefficient matrix of an edge is:
Hj;j = JiQ0;

(

\

\

)

T

T

T

T

T

T

)

/

= [s non zero only in the blocks i,j.

39

Sparsity

= An edge
= jth and t
= tothe b

= The resu

Summary

Ij contributes only to the

ne j* block of by,
ocks ii, jj, ij and ji of H;;

ting system is sparse

= [t can be computed by summing up
the contribution of each edge
= Efficient solvers can be used

= Sparse Cholesky decomposition
= Conjugate gradients

= ... many

others
40

The Linear System

= Vector of the states increments:

AxT = (Ax] AxD .. AxT)
= Coefficient vector:
b’ = (bl b --- b})
= System Matrix:
(Iilll 02 ... ﬁln\
_— IiI.21 H22 ... IiIQn

= The linear system is a block system with
n blocks, one for each node of the graph

41

Building the Linear System

For each constraint:
= Compute error e;; = t2v(Z;}(X;1X;))
= Compute the blocks of the Jacobian:
de(x;,X;) Oe(x;,x;)
6Xi an
= Update the coefficient vector:
= Update the system matrix:
H'+ = A[Q;;A; H74+ = A].Q;;B;;

A

42

Algorithm

optimize(x):

while (!lconverged)
(H, b) = buildLinearSystem(x)
Ax = solveSparse(HAx = —b)
X =X+ AX

end

return x

43

Example on the Blackboard

44

Trivial 1D Example @)@

= TwWo nodes and one observation
(z122)! = (00)

1

2
=zip—(22—721)=1-(0-0)=1
(1 -1)

e1oQ12J12 = (2 — 2)

2 =2
J_{29312:(_2 5)

—H ,b1o

<
|

N
= N
Il

e 8
HI\)I\)
[

-
o
|

>
<
|

BUT det(H) = 02?2,

5

What Went Wrong?

= The constraint specifies a relative
constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

= One node needs to be fixed

4)

constraint
H —= 2 =2 + L0 that sets
-2 2 O O p
1 _ Y, X1=
Ax = —H “b1o
Ax = (017!

46

Real World Examples

47

Conclusions

= The back-end part of the SLAM
problem can be effectively solved with
Gauss-Newton error minimization

= The H matrix is typically sparse

= This sparsity allows for efficiently
solving the linear system

= One of the state-of-the-art solutions
for computing maps

48

A Note For The Next Exercise

Consider a 2D graph where each node is
parameterized as x! = (z; y; 6;)
Expressed as a transformation X, = v2t(x;)
Consider the error function
e;j = tzv(z;jl(X;lxj))

Compute the blocks of the Jacobian J
Oe(x;,x;)

0x; 0%
Hint: write the error function by using
rotation matrices and translation vectors

RL(RI(t; —t;) —t;5)
e;j(x;,x;) = (i 9; —397;—@9@-]- i

0 X
A’l)j _ e(Xz Xj)

49

Literature

Least Squares SLAM

= Grisetti, Kimmerle, Stachniss,
Burgard: “A Tutorial on Graph-based
SLAM”, 2010

50

