Robot Mapping

Least Squares Approach to
SLAM - Additional Remarks

Cyrill Stachniss

Chap. 15: What Went Wrong?

- The constraint specifies a relative constraint between both nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be fixed

$$
\begin{aligned}
\mathbf{H} & =\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\Delta \mathbf{x} & =-\mathbf{H}^{-1} b_{12} \\
\Delta \mathbf{x} & =\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \text { constraint } \\
& \text { that sets } \\
& \boldsymbol{d \boldsymbol { x } _ { \mathbf { 1 } }}=\mathbf{0}
\end{aligned}
$$

Global Reference Frame

- We saw that the matrix \mathbf{H} has not full rank (after adding the constraints)
- The global frame had not been fixed

Role of the Prior

- Fixing the global reference frame is strongly related to the prior $p\left(\mathrm{x}_{0}\right)$
- A Gaussian estimate about x_{0} results in an additional constraint
- E.g., first pose in the origin:

$$
e\left(x_{0}\right)=\operatorname{t2v}\left(X_{0}\right)
$$

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Uncertainty

- H represents the information matrix given the linearization point
- Inverting H gives the covariance matrix (which is dense)
- The diagonal blocks of the covariance matrix represent the (absolute) uncertainties of the corresponding variables

Relative Uncertainty

To determine the relative uncertainty between x_{i} and x_{j} :

- Construct the full matrix \mathbf{H}
- Suppress the rows and the columns of x_{i} (=fix it)
- Compute the $j_{j} j$ block of the inverse
- This block will contain the covariance matrix of x_{j} w.r.t. x_{i}, which has been fixed

Summary

- Prior knowledge about a pose results in an additional constraint
- Embedding prior knowledge about the position of some parts of the map
- Computing the relative uncertainties

Example

