<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Graph-Based SLAM (Chap. 15)

 Observing previously seen areas generates constraints between non-successive poses

3

Graph-Based SLAM (Chap. 15)

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

Graph-Based SLAM (Chap. 15)

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

Front-End and Back-End

- Front-end extracts constraints from the sensor data (data association!)
- Back-end optimizes the pose-graph to reduce the error introduced by the constraints

Intermediate solutions are needed to make good data associations

5

7

Motivation

- SLAM front-end seeks for loop-closures
- Requires to compare observations to all previously obtained ones
- In practice, limit search to areas in which the robot is likely to be
- This requires to know in which parts of the graph to search for data associations

Hierarchical Approach

- Insight: to find loop closing points, one does not need the perfect global map
- Idea: correct only the core structure of the scene, not the overall graph
- The hierarchical pose-graph is a sparse approximation of the original problem
- It exploits the facts that in SLAM
 - Robot moved through the scene and it not "teleported" to locations
 - Sensors have a limited range

Key Idea of the Hierarchy Key Idea of the Hierarchy Input is the dense Input is the dense graph graph Group the nodes of the graph based on their local connectivity 9 10 **Key Idea of the Hierarchy Key Idea of the Hierarchy** Input is the dense The representatives are the nodes in a graph new sparsified graph Group the nodes of (upper level) the graph based on their local connectivity

• For each group, select one node as a "representative"

Construction of the Hierarchy

- When and how to generate a new group?
 - A simply, distance-based heuristic on the graph
 - The first node of a new group is the representative
- When to propagate information downwards?
 Only when there are inconsistencies
- How to construct an edge in the sparsified graph?
 - Next slides
- How to propagate information downwards?
 - Next slides

Determining Edge Parameters

- Given two connected groups
- How to compute a virtual observation Z and the information matrix Ω for the new edge?

17

Determining Edge Parameters

 Optimize the two subgroups independently from the rest

Determining Edge Parameters

- Optimize the two subgroups independently from the rest
- The observation is the relative transformation between the two representatives

18

group at the lower level

optimize at the lower level

 \mathbf{x}_{a}

 \mathbf{x}_h

24

using a rigid body

 Only if the lower level becomes inconsistent,

transformation

by transforming the group at the lower level using a rigid body transformation

23

For the Best Possible Map...

- Make sure to run the optimization on the lowest level in the end
- For offline processing with all constraints, the hierarchy helps convergence faster in case of large errors
- In this case, one pass up the tree (to construct the edges) followed by one pass down the tree is sufficient

Stanford Garage

26

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

25

27

Stanford Garage Result

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Video

Intel Research Lab Video

Consistency

- Red: overly confident (~0.1% prob. mass)
- Blue: under confident (~10% prob. mass)

Consistency

- Evaluation how well does the top level in the hierarchy represent the original input
- Probability mass of the marginal distribution in the highest level vs. the one of the true estimate (original problem, lowest level)

	Prob. mass not covered		Prob. mass outside
Intel	• 0.10%		10.18%
W-10000	2.53%		24.05%
Stanford	0.01%		7.88%
Sphere	2.75%		10.21%
	low risk of becoming	one	e does not ignore
	overly confident	too	much information

Conclusions

- Hierarchical pose-graph to estimate the structure to support efficient data association
- Designed for online mapping (interplay between optimization and data association)
- Higher level represent simplified problem

Literature

Hierarchical Pose-Graph Optimization

- Grisetti, Kümmerle, Stachniss, Frese, and Hertzberg: "Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping"
- Open-source implementation hosted at http://openslam.org/hog-man.html

33