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Stochastic Gradient Descent

= Minimize the error individually for each
constraint (decomposition of the problem
into sub-problems)

= Solve one step of each sub-problem
= Solutions might be contradictory

* The magnitude of the correction decreases
with each iteration

= Learning rate to achieve convergence
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=) distribute the error over
a set of involved nodes
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Preconditioned SGD

= Minimize the error individually for each
constraint

= Solve one step of each sub-problem

= A solution is found when an equilibrium is
reached

= Update rule for a single constraint:

\ Previous solution H Hessian H Information matrix \
v
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\ Current solution H Learning rate H Jacobian H residual \

Node Parameterization

* How to represent the nodes in the graph?

» Impacts which parts need to be updated for
a single constraint update
*» Transform the problem into a different
space so that:
= the structure of the problem is exploited
= the calculations become fast and easy

‘ parameters ‘ ‘ poses ‘
!

X = g(p) —p= gil(X) x* = arg}znin Ze;j(X)TQije;'j(X)
i,
‘ Mapping function ‘ ‘transformed problem

Parameterization of Olson

= Incremental parameterization:
Ly —=Pi — Pi—1

‘ parameters ‘ ‘ poses ‘

= Directly related to the trajectory

= Problem: for optimizing a constraint
between the nodes i and k, one needs
to updates the nodes i, ..., k ignoring
the topology of the environment

Alternative Parameterization

= Exploit the topology of the space to
compute the parameterization

= Idea: “Loops should be one sub-
problem”

= Such a parameterization can be
extracted from the graph topology
itself




Tree Parameterization

= How should such a problem
decomposition look like?
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Tree Parameterization

= Use a spanning tree!

&9
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Tree Parameterization

= Construct a spanning tree from the graph
= Mapping between poses and parameters

_ p—1 )
Xi= Pparent(z‘)P’L

= Error of a constraint in the new
parameterization

E;; = Ai_jl UpChain*1 DownChain

Only variables along the path
’ of a constraint are involved in
the update
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Stochastic Gradient Descent
With The Tree Parameterization

= The tree parameterization leads to several
smaller problems which are either:
= constraints on the tree (“open loop”)
* constraints not in the tree (“a loop closure”)

= Each SGD equation independently solves
one sub-problem at a time

= The solutions are integrated via the learning
rate 9




Computation of the Update Step

= 3D rotations are non-linear

= Update according to the SGD equation
may lead to poor convergence

= SGD update:
Ax = AH_ng;Qijrij
» Jdea: distribute a fraction of the

residual along the parameters so that
the error of that constraint is reduced
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Computation of the Update Step

Alternative update in the “spirit” of the
SGD: Smoothly deform the path along
the constraints so that the error is
reduced

P; é?b Q

©)
CI) Distribute the & Distribute the <\>
5 b

rotational error translational error a)
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Rotational Error

= In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

* Find a set of incremental rotations so that
the following equality holds:

RiRo---RnB = R{R5---R),

t t t

‘ rotations along the path iﬁgﬂgﬂ;f the ‘ corrected terms for the rotations ‘

residual in the
local frame

Ry R Ry
1 Rp Rn] R, 2 I
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Rotational Residual

= Let the first node be the reference
frame

= We want a correcting rotation around
a single axis

= Let A; be the orientation of the i-th
node in the global reference frame

Al = A,B

16




Rotational Residual

= Written as a rotation in global frame
Al = ApB = QA
= with a decomposition of the rotational
residual into a chain of incremental
rotations obtained by spherical linear
interpolation (slerp)

Q = Q1Q2---Qn

QL = sIerp(Q,uk_l)Tslerp(Q,uk) u € [0...)]

= Slerp designed for 3d animations:
constant speed motion along a circle

What is the SLERP?

= Spherical LinEar inteRPolation

= Introduced by Ken Shoemake for
interpolations in 3D animations

= Constant speed motion along a circle
arc with unit radius

= Properties:

R’ = slerp(R,u)
axisOf(R)) = axisOf(R)
angleOf(R)) = w angleOf(R)
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Rotational Residual

= Given the Q;, we obtain
Al =Q1...QpAL = Q1. Ay
= as well as
Ry, = AT 4
= and can then solve:

R} Q1R1
Ry = (Q1R1)TQ1.oR1:0 = RIQTQ1Q2R R

R, = [(Ry:4—1)TQrR1.x_1]1Rs

19

Rotational Residual

= Resulting update rule
Rj, = (Rip-1)" QrR1y
= It can be shown that the change in
each rotational residual is bounded by
Ar;%k_l < langleOf(Qp)|

= This bounds a potentially introduced
error at node k when correcting a
chain of poses including k
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How to Determine u,?

* The u, describe the distribution of the error

Qr = slerp(Q,ux_1)Tslerp(Q, ug) wel0...)\]

= Consider the uncertainty of the constraints
-1

up = mMin (l,)\|77ij|)

> dyt

meP;

>oody!

meP;jAm<k

dpy = Z min [eigen ()]

l,m)

all constraints connecting m

= This assumes roughly spherical covariances!
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Distributing the Translational
Error

= That is trivial
= Just scale the X%, y, z movements
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Summary of the Algorithm

= Decompose the problem according to
the tree parameterization

= Loop:
» Select a constraint

= Randomly or sample inverse proportional to
the number of nodes involved in the update

= Compute the nodes involved in update
* Nodes according to the parameterization tree
= Reduce the error for this sub-problem

= Reduce the rotational error (slerp)
= Reduce the translational error

23

Complexity

= In each iteration, the approach
handles all constraints

= Each constraint optimization requires
to update a set of nodes (on average:
the average path length according to
the tree)

o

#constraints avg. path length
(parameterization tree)
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Cost of a Constraint Update

Node Reduction
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Mapping the EPFL Campus

EPFL campus

»= 10km long trajectory with 3D laser scans

Mapping the EPFL Campus
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Time Comparison
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Robust to the Initial Guess

= Random initial guess

= Intel datatset as the basis for 16 floors
distributed over 4 towers

final result
(50 iterations)
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Drawbacks of TORO

= The slerp-based update rule optimizes
rotations and translations separately

= [t assume roughly spherical
covariance ellipses

= Slow convergence speed close to
minimum
= No covariance estimates
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Conclusions ﬁ

= TORO - Efficient maximum likelihood
estimate for 2D and 3D pose graphs

= Robust to bad initial configurations

= Efficient technique for ML map
estimation (or to initialize GN/LM)

= Works in 2D and 3D
= Scales up to millions of constraints

= Available at OpenSLAM.org
http://www.openslam.org/toro.htmi
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