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for SLAM  

Cyrill Stachniss 

2 

Stochastic Gradient Descent 
!  Minimize the error individually for each 

constraint (decomposition of the problem 
into sub-problems) 

!  Solve one step of each sub-problem  
!  Solutions might be contradictory 
!  The magnitude of the correction decreases 

with each iteration 
!  Learning rate to achieve convergence 

[First used in the SLAM community by Olson et al., �06] 

selected constraint 
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distribute the error over  
a set of involved nodes 
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Preconditioned SGD 
!  Minimize the error individually for each 

constraint  
!  Solve one step of each sub-problem  
!  A solution is found when an equilibrium is 

reached 
!  Update rule for a single constraint: 
 

Information matrix Previous solution 

residual Jacobian 

Hessian 

Learning rate Current solution 
6 

Node Parameterization 
!  How to represent the nodes in the graph? 
!  Impacts which parts need to be updated for 

a single constraint update 
!  Transform the problem into a different 

space so that: 
!  the structure of the problem is exploited 
!  the calculations become fast and easy  

Mapping function 

poses parameters 

transformed problem 

parameters 
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Parameterization of Olson 

!  Incremental parameterization: 

 
!  Directly related to the trajectory  
!  Problem: for optimizing a constraint 

between the nodes i and k, one needs 
to updates the nodes i, …, k ignoring 
the topology of the environment 
 

poses parameters 
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Alternative Parameterization 

!  Exploit the topology of the space to 
compute the parameterization 

!  Idea: �Loops should be one sub-
problem� 

!  Such a parameterization can be 
extracted from the graph topology 
itself 
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Tree Parameterization 

!  How should such a problem  
decomposition look like? 
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Tree Parameterization 

!  Use a spanning tree! 
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Tree Parameterization 
!  Construct a spanning tree from the graph 
!  Mapping between poses and parameters 

 
!  Error of a constraint in the new 

parameterization 

Only variables along the path  
of a constraint are involved in  
the update 
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Stochastic Gradient Descent 
With The Tree Parameterization 
!  The tree parameterization leads to several 

smaller problems which are either: 
!  constraints on the tree (�open loop�) 
!  constraints not in the tree (�a loop closure�) 

!  Each SGD equation independently solves 
one sub-problem at a time 

!  The solutions are integrated via the learning 
rate 
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Computation of the Update Step 

!  3D rotations are non-linear  
!  Update according to the SGD equation 

may lead to poor convergence  
!  SGD update: 

!  Idea: distribute a fraction of the 
residual along the parameters so that 
the error of that constraint is reduced 
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Computation of the Update Step 

Alternative update in the �spirit� of the 
SGD: Smoothly deform the path along 
the constraints so that the error is 
reduced 

Distribute the 
rotational error 

Distribute the 
translational error 
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Rotational Error 
!  In 3D, the rotational error cannot be simply 

added to the parameters because the 
rotations are not commutative 

!  Find a set of incremental rotations so that 
the following equality holds: 

rotations along the path fraction of the 
rotational 
residual in the 
local frame 

corrected terms for the rotations 
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Rotational Residual 

!  Let the first node be the reference 
frame 

!  We want a correcting rotation around 
a single axis 

!  Let      be the orientation of the i-th 
node in the global reference frame 
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Rotational Residual 

!  Written as a rotation in global frame 
 
!  with a decomposition of the rotational 

residual into a chain of incremental 
rotations obtained by spherical linear 
interpolation (slerp) 

 
!  Slerp designed for 3d animations: 

constant speed motion along a circle 
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What is the SLERP? 

!  Spherical LinEar inteRPolation 
!  Introduced by Ken Shoemake for 

interpolations in 3D animations 
!  Constant speed motion along a circle 

arc with unit radius 
!  Properties: 
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Rotational Residual 

!  Given the     , we obtain 

!  as well as 

!  and can then solve: 
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Rotational Residual 

!  Resulting update rule 

 
!  It can be shown that the change in 

each rotational residual is bounded by 

 
!  This bounds a potentially introduced 

error at node k when correcting a 
chain of poses including k 
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How to Determine uk? 
!  The uk describe the distribution of the error  

!  Consider the uncertainty of the constraints 

 

!  This assumes roughly spherical covariances! 

all constraints connecting m 
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Distributing the Translational 
Error 
!  That is trivial 
!  Just scale the x, y, z movements 
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Summary of the Algorithm 

!  Decompose the problem according to 
the tree parameterization 

!  Loop: 
!  Select a constraint 

! Randomly or sample inverse proportional to  
the number of nodes involved in the update 

! Compute the nodes involved in update 
! Nodes according to the parameterization tree 

! Reduce the error for this sub-problem 
! Reduce the rotational error (slerp) 
! Reduce the translational error 
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Complexity 

!  In each iteration, the approach 
handles all constraints 

!  Each constraint optimization requires 
to update a set of nodes (on average: 
the average path length according to 
the tree) 

#constraints avg. path length 
(parameterization tree) 
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Cost of a Constraint Update 
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Node Reduction 

!  Complexity grows with the length of 
the trajectory 

!  Combine constraints between nodes 
if the robot is well-localized 

 

 
!  Similar to adding rigid constraints 
!  Then, complexity depends on the size 

of the environment (not trajectory) 
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Simulated Experiment 

!  Highly connected 
graph 

!  Poor initial guess 
!  2200 nodes 
!  8600 constraints 
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Spheres with Different Noise 
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EPFL campus 

Mapping the EPFL Campus 

!  10km long trajectory with 3D laser scans 
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Mapping the EPFL Campus 
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TORO vs. Olson�s Approach 

TORO 

Olson�s approach 

1 iteration             10 iterations                50 iterations              100 iterations          300 iterations 
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TORO vs. Olson�s Approach 



33 

Time Comparison 
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Robust to the Initial Guess 

!  Random initial guess 
!  Intel datatset as the basis for 16 floors 

distributed over 4 towers 

initial configuration intermediate result final result  
(50 iterations) 
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Drawbacks of TORO 

!  The slerp-based update rule optimizes 
rotations and translations separately 

!  It assume roughly spherical 
covariance ellipses 

!  Slow convergence speed close to 
minimum 

!  No covariance estimates 
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Conclusions 

!  TORO - Efficient maximum likelihood 
estimate for 2D and 3D pose graphs  

!  Robust to bad initial configurations 

!  Efficient technique for ML map 
estimation (or to initialize GN/LM) 

!  Works in 2D and 3D 
!  Scales up to millions of constraints  
!  Available at OpenSLAM.org 

http://www.openslam.org/toro.html 
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