Robot Mapping

TORO - Gradient Descent for SLAM

Cyrill Stachniss

Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First used in the SLAM community by Olson et al., ' 06]

Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

distribute the error over a set of involved nodes
[First used in the SLAM community by Olson et al., ' 06]

Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First used in the SLAM community by Olson et al., ' 06]

Preconditioned SGD

- Minimize the error individually for each constraint
- Solve one step of each sub-problem
- A solution is found when an equilibrium is reached
- Update rule for a single constraint:

Node Parameterization

- How to represent the nodes in the graph?
- Impacts which parts need to be updated for a single constraint update
- Transform the problem into a different space so that:
- the structure of the problem is exploited
- the calculations become fast and easy

Parameterization of Olson

- Incremental parameterization:

- Directly related to the trajectory
- Problem: for optimizing a constraint between the nodes i and k, one needs to updates the nodes $\mathrm{i}, \ldots, \mathrm{k}$ ignoring the topology of the environment

Alternative Parameterization

- Exploit the topology of the space to compute the parameterization
- Idea: "Loops should be one subproblem"
- Such a parameterization can be extracted from the graph topology itself

Tree Parameterization

- How should such a problem decomposition look like?

Tree Parameterization

- Use a spanning tree!

Tree Parameterization

- Construct a spanning tree from the graph
- Mapping between poses and parameters

$$
X_{i}=P_{\text {parent }(i)}^{-1} P_{i}
$$

- Error of a constraint in the new parameterization

$$
E_{i j}=\Delta_{i j}^{-1} \text { UpChain }^{-1} \text { DownChain }
$$

Only variables along the path of a constraint are involved in the update

Stochastic Gradient Descent With The Tree Parameterization

- The tree parameterization leads to several smaller problems which are either:
- constraints on the tree ("open loop")
- constraints not in the tree ("a loop closure")
- Each SGD equation independently solves one sub-problem at a time
- The solutions are integrated via the learning rate

Computation of the Update Step

- 3D rotations are non-linear
- Update according to the SGD equation may lead to poor convergence
- SGD update:

$$
\boldsymbol{\Delta} \mathbf{x}=\lambda \mathbf{H}^{-1} \mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{r}_{i j}
$$

- Idea: distribute a fraction of the residual along the parameters so that the error of that constraint is reduced

Computation of the Update Step

Alternative update in the "spirit" of the SGD: Smoothly deform the path along the constraints so that the error is reduced

Rotational Error

- In 3D, the rotational error cannot be simply added to the parameters because the rotations are not commutative
- Find a set of incremental rotations so that the following equality holds:

$$
R_{1} R_{2} \cdots R_{n} B=R_{1}^{\prime} R_{2}^{\prime} \cdots R_{n}^{\prime}
$$

Rotational Residual

- Let the first node be the reference frame
- We want a correcting rotation around a single axis
- Let A_{i} be the orientation of the i-th node in the global reference frame

$$
A_{n}^{\prime}=A_{n} B
$$

Rotational Residual

- Written as a rotation in global frame

$$
A_{n}^{\prime}=A_{n} B=Q A_{n}
$$

- with a decomposition of the rotational residual into a chain of incremental rotations obtained by spherical linear interpolation (slerp)

$$
\begin{aligned}
Q & =Q_{1} Q_{2} \cdots Q_{n} \\
Q_{k} & =\operatorname{slerp}\left(Q, u_{k-1}\right)^{T} \operatorname{slerp}\left(Q, u_{k}\right) \quad u \in[0 \ldots \lambda]
\end{aligned}
$$

- Slerp designed for 3d animations: constant speed motion along a circle

What is the SLERP?

- Spherical LinEar inteRPolation
- Introduced by Ken Shoemake for interpolations in 3D animations
- Constant speed motion along a circle arc with unit radius
- Properties:

$$
\begin{aligned}
\mathcal{R}^{\prime} & :=\operatorname{slerp}(\mathcal{R}, u) \\
\operatorname{axisOf}\left(\mathcal{R}^{\prime}\right) & =\operatorname{axisOf}(\mathcal{R}) \\
\operatorname{angleOf}\left(\mathcal{R}^{\prime}\right) & =u \operatorname{angleOf}(\mathcal{R})
\end{aligned}
$$

Rotational Residual

- Given the Q_{k}, we obtain

$$
A_{k}^{\prime}=Q_{1} \ldots Q_{k} A_{k}=Q_{1: k} A_{k}
$$

- as well as

$$
R_{k}^{\prime}=A_{k-1}^{\prime T} A_{k}^{\prime}
$$

- and can then solve:

$$
\begin{aligned}
R_{1}^{\prime} & =Q_{1} R_{1} \\
R_{2}^{\prime} & =\left(Q_{1} R_{1}\right)^{T} Q_{1: 2} R_{1: 2}=R_{1}^{T} Q_{1}^{T} Q_{1} Q_{2} R_{1} R_{2} \\
& \vdots \\
R_{k}^{\prime} & =\left[\left(R_{1: k-1}\right)^{T} Q_{k} R_{1: k-1}\right] R_{k}
\end{aligned}
$$

Rotational Residual

- Resulting update rule

$$
R_{k}^{\prime}=\left(R_{1: k-1}\right)^{T} Q_{k} R_{1: k}
$$

- It can be shown that the change in each rotational residual is bounded by

$$
\Delta r_{k, k-1}^{\prime} \leq \mid \text { angleOf }\left(Q_{k}\right) \mid
$$

- This bounds a potentially introduced error at node k when correcting a chain of poses including k

How to Determine $\boldsymbol{u}_{\boldsymbol{k}}$?

- The u_{k} describe the distribution of the error

$$
Q_{k}=\operatorname{slerp}\left(Q, u_{k-1}\right)^{T} \operatorname{slerp}\left(Q, u_{k}\right) \quad u \in[0 \ldots \lambda]
$$

- Consider the uncertainty of the constraints

$$
\begin{aligned}
& u_{k}= \min \left(1, \lambda\left|\mathcal{P}_{i j}\right|\right)\left[\sum_{m \in \mathcal{P}_{i j} \wedge m \leq k} d_{m}^{-1}\right]\left[\sum_{m \in \mathcal{P}_{i j}} d_{m}^{-1}\right]^{-1} \\
& d_{m}=\sum_{\langle l, m\rangle} \min \left[\operatorname{eigen}\left(\Omega_{l m}\right)\right] \\
& \text { all constraints connecting } \mathrm{m}
\end{aligned}
$$

- This assumes roughly spherical covariances!

Distributing the Translational Error

- That is trivial
- Just scale the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ movements

Summary of the Algorithm

- Decompose the problem according to the tree parameterization
- Loop:
- Select a constraint
- Randomly or sample inverse proportional to the number of nodes involved in the update
- Compute the nodes involved in update
- Nodes according to the parameterization tree
- Reduce the error for this sub-problem
- Reduce the rotational error (slerp)
- Reduce the translational error

Complexity

- In each iteration, the approach handles all constraints
- Each constraint optimization requires to update a set of nodes (on average: the average path length according to the tree)

\#constraints avg. path length (parameterization tree)

Cost of a Constraint Update

Node Reduction

- Complexity grows with the length of the trajectory
- Combine constraints between nodes if the robot is well-localized

$$
\begin{aligned}
\Omega_{i j} & =\Omega_{i j}^{(1)}+\Omega_{i j}^{(2)} \\
z_{i j} & =\Omega_{i j}^{-1}\left(\Omega_{i j}^{(1)} z_{i j}^{(1)}+\Omega_{i j}^{(2)} z_{i j}^{(2)}\right)
\end{aligned}
$$

- Similar to adding rigid constraints
- Then, complexity depends on the size of the environment (not trajectory)

Simulated Experiment

- Highly connected graph
- Poor initial guess
- 2200 nodes
- 8600 constraints

Spheres with Different Noise

Mapping the EPFL Campus

- 10km long trajectory with 3D laser scans

Mapping the EPFL Campus

TORO vs. Olson's Approach

Olson's approach

1 iteration

「

TORO

TORO vs. Olson's Approach

Time Comparison

Robust to the Initial Guess

- Random initial guess
- Intel datatset as the basis for 16 floors distributed over 4 towers

initial configuration

final result (50 iterations)

Drawbacks of TORO

- The slerp-based update rule optimizes rotations and translations separately
- It assume roughly spherical covariance ellipses
- Slow convergence speed close to minimum
- No covariance estimates

Conclusions

- TORO - Efficient maximum likelihood estimate for 2D and 3D pose graphs
- Robust to bad initial configurations
- Efficient technique for ML map estimation (or to initialize GN/LM)
- Works in 2D and 3D
- Scales up to millions of constraints
- Available at OpenSLAM.org http://www.openslam.org/toro.html

Literature

SLAM with Stochastic Gradient Descent

- Olson, Leonard, Teller: "Fast Iterative Optimization of Pose Graphs with Poor Initial Estimates"
- Grisetti, Stachniss, Burgard: "Nonlinear Constraint Network Optimization for Efficient Map Learning"

