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Stochastic Gradient Descent

= Minimize the error individually for each
constraint (decomposition of the problem
into sub-problems)

= Solve one step of each sub-problem
= Solutions might be contradictory

= The magnitude of the correction decreases
with each iteration

= Learning rate to achieve convergence

Qselected constraint

[First used in the SLAM community by Olson et al., "06]
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= distribute the error over
a set of involved nodes
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Preconditioned SGD

= Minimize the error individually for each

constraint

= Solve one step of each sub-problem
= A solution is found when an equilibrium is

reached

= Update rule for a single constraint:
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Node Parameterization

= How to represent the nodes in the graph?

= Tmpacts which parts need to be updated for
a single constraint update

= Transform the problem into a different
space so that:
= the structure of the problem is exploited
= the calculations become fast and easy
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Parameterization of Olson

= Incremental parameterization:

Lj — Pi — Pi—1
1 1

parameters | | poses

= Directly related to the trajectory

= Problem: for optimizing a constraint
between the nodes i and k, one needs
to updates the nodes i, ..., k ignoring
the topology of the environment



Alternative Parameterization

= Exploit the topology of the space to
compute the parameterization

= Jdea: “Loops should be one sub-
problem”

= Such a parameterization can be
extracted from the graph topology
itself



Tree Parameterization

= How should such a problem
decomposition look like?




Tree Parameterization

= Use a spanning tree!
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Tree Parameterization

= Construct a spanning tree from the graph
= Mapping between poses and parameters

_— p—1 ,
Aj = Pparent(i)PZ

= Error of a constraint in the new
parameterization

E;; = A" UpChain—' DownChain

Only variables along the path
of a constraint are involved iIn
the update
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Stochastic Gradient Descent
With The Tree Parameterization

= The tree parameterization leads to several
smaller problems which are either:
= constraints on the tree (“open loop”)
= constraints not in the tree (“a loop closure™)

= Fach SGD equation independently solves
one sub-problem at a time

= The solutions are integrated via the learning
rate 7




Computation of the Update Step

= 3D rotations are non-linear

= Update according to the SGD equation
may lead to poor convergence

= SGD update:
AX = )\H_lJ;-Z;-QijI'ij
» Jdea: distribute a fraction of the

residual along the parameters so that
the error of that constraint is reduced
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Computation of the Update Step

Alternative update in the “spirit” of the
SGD: Smoothly deform the path along
the constraints so that the error is
reduced
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Rotational Error

= In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

* Find a set of incremental rotations so that
the following equality holds:

RiRy---RpnB = R{R5---R),
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tati I th th | fracti f th
rotations along he pa r:)a’l[gtligg;l © corrected terms for the rotations

residual in the
local frame
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Rotational Residual

» et the first node be the reference
frame

= We want a correcting rotation around
a single axis

= Let A; be the orientation of the i-th
node in the global reference frame

Al = A,B
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Rotational Residual

= Written as a rotation in global frame

= with a decomposition of the rotational
residual into a chain of incremental
rotations obtained by spherical linear
interpolation (slerp)

Q Q1Q2 - Qn
Q. slerp(Q,uk_l)Tslerp(Q,uk) uw e [0...)]

= Slerp designed for 3d animations:
constant speed motion along a circle



What is the SLERP?

= Spherical LinEar inteRPolation

= Introduced by Ken Shoemake for
interpolations in 3D animations

= Constant speed motion along a circle
arc with unit radius

= Properties:

R = slerp(R,u)
axisOf (R') = axisOf(R)
angleOf(R') = w angleOf(R)
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Rotational Residual

= Given the @, we obtain
AL = Q1. QrAr = Q1AL
= as well as
Ry = AL 14
= and can then solve:

= Q1R
) T T AT
Ry = (Q1R1) " Q12R10=R1Q1Q1Q2R1R>

R
|

R, = [(R1:p-1)' QLR1.1_1]Rs
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Rotational Residual

= Resulting update rule
R, = (Rix_1)' QpRix

= [t can be shown that the change in
each rotational residual is bounded by

Aty 1 < [angleOf(Qy)]

= This bounds a potentially introduced
error at node k when correcting a
chain of poses including k
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How to Determine u,?

= The u, describe the distribution of the error

Qr, = slerp(Q,us_1)'slerp(Q, us) uwe[0... ]

= Consider the uncertainty of the constraints
1-1

wy, = min (1, A[Py;]) St Y dnt
_mEPij/\mgk \7/
d,, = Z min [eigen (2., )]

/Sl,m}

all constraints connecting m

= This assumes roughly spherical covariances!
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Distributing the Translational
Error

= That is trivial
= Just scale the X, y, z movements
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Summary of the Algorithm

= Decompose the problem according to
the tree parameterization

= Loop:

= Select a constraint

= Randomly or sample inverse proportional to
the number of nodes involved in the update

= Compute the nodes involved in update
= Nodes according to the parameterization tree

= Reduce the error for this sub-problem
= Reduce the rotational error (slerp)
= Reduce the translational error
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Complexity

= In each iteration, the approach
handles all constraints

= Each constraint optimization requires
to update a set of nodes (on average:
the average path length according to
the tree)

o

#constraints avg. path length
(parameterization tree)
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Cost of a Constraint Update

Operations per constraint
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Node Reduction

= Complexity grows with the length of
the trajectory

= Combine constraints between nodes
if the robot is well-localized

Q; = 9+l
= 0t (D0 4 @:0)

1) 1] g 1] 19
= Similar to adding rigid constraints

= Then, complexity depends on the size
of the environment (not trajectory)
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Simulated Experiment

= Highly connected
graph

= Poor initial guess
= 2200 nodes
8600 constraints

168

18 ¢

chi®2/constraint
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pheres with Different Noise
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Mapping the EPFL Campus

EPFL campus

= 10km long trajectory with 3D laser scans
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Mapping the EPFL Campus
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TORO vs. Olson’s Approach

Olson’s approach

iterations
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50 iterations

10 iterations

1 iteration

TORO
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TORO vs. Olson’s Approach

error per constraint
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Time Comparison
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Robust to the Initial Guess

= Random initial guess

» Intel datatset as the basis for 16 floors
distributed over 4 towers

initial configurgtion intermediate result

(50 iterations)
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Drawbacks of TORO

= The slerp-based update rule optimizes
rotations and translations separately

= [t assume roughly spherical
covariance ellipses

= Slow convergence speed close to
mMinimum
= NO covariance estimates
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Conclusions h

= TORO - Efficient maximum likelihood
estimate for 2D and 3D pose graphs

= Robust to bad initial configurations

= Efficient technique for ML map
estimation (or to initialize GN/LM)

= Works in 2D and 3D
= Scales up to millions of constraints

= Available at OpenSLAM.org
http://www.openslam.org/toro.html
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