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Abstract
Simultaneous Localization and Mapping (SLAM) has focused on noisy but unique data associations resulting in linear
Gaussian uncertainty models. However, a unique decision is often not possible using only local information, giving
rise to ambiguities that have to be resolved globally during optimization. To solve this problem, the pose graph data
structure is extended here by multimodal constraints modeled by mixtures of Gaussians (MoG). Furthermore, optimization
methods for this novel formulation are introduced, namely (a) robust iteratively reweighted least squares, and (b) Prefilter
Stochastic Gradient Descent (SGD) where a preprocessing step determines globally consistent modes before applying
SGD. In addition, a variant of the Prefilter method (b) is introduced in form of (c) Prefilter Levenberg–Marquardt.
The methods are compared with traditional state-of-the-art optimization methods including (d) Stochastic Gradient
Descent and (e) Levenberg–Marquardt as well as (f) Particle filter SLAM and with (g) an optimal exhaustive algorithm.
Experiments show that ambiguities significantly impact state-of-the-art methods, and that the novel Prefilter methods
(b) and (c) perform best. This is further substantiated with experiments using real-world data. To this end, a method
to generate MoG constraints from a plane-based registration algorithm is introduced and used for 3D SLAM under
ambiguities.

Keywords
SLAM, pose graph, registration, ambiguity, multimodal distribution, mixture of Gaussians

1. Introduction

Any approach to Simultaneous Localization and Mapping
(SLAM) clearly requires some form of registration in the
widest sense, i.e. the estimation of spatial relations between
sensor readings of the environment at different locations.
Examples include the wide range of techniques for scan
matching or the spatial association of landmarks. In graph-
based methods (Lu and Milios, 1997; Golfarelli et al.,
2001; Dellaert, 2005; Frese et al., 2005; Olson et al., 2006;
Grisetti et al., 2007c, 2010; Konolige et al., 2010), which
are discussed in more detail in Section 1.2, these spatial
relations are represented in edges. Existing approaches to
graph-based SLAM are very efficient but they suffer from
what we believe to be a fundamental drawback, namely the
assumption that the registration represented in each edge
gives a noisy but in principle correct and unique solution.
More precisely, the spatial relation is assumed to be drawn
from a unimodal distribution and it is modeled as such in
subsequent probabilistic processing.

When the robot moves from A to B and acquires sensor
data sA and sB in these locations, there are many possible

reasons why a registration of sA and sB may not lead to a
unique solution. One fundamental issue is ambiguity in the
environment. Consider, for example, a hallway with a repet-
itive pattern of doors or lights on the ceiling or a corridor
intersection. Any form of processing of the observed sensor
data can only resolve the robot motion up to the distance to
the nearest door in the hallway case, but it would be impos-
sible to estimate which door seen in the previous observa-
tion is the currently nearest one. Similarly, it is possible
to know the relative position to a corridor entrance in the
symmetric corridor intersection case, but not which exact
corridor entrance it is. Thus, in these ambiguous cases, the
resulting probability distribution contains a discrete num-
ber of rather pronounced local maxima, one per possible
robot motion. A traditional sensor data registration method
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may either just randomly choose one of these modes and
report it, or report a result with an exaggerated uncertainty.
In these examples of translational and rotational ambigu-
ity, it is impossible to compute a single accurate motion
estimate by only considering data within the observation
pair being registered. Other possible sources for ambigu-
ities include the presence of changes in the environment
over time, occlusions, limited sensor range, or limitations
in the concrete registration methods themselves. An illus-
trative example of a registration process with ambiguous
sensor data is presented in Figure 1, showing the corridor
intersection case from above.

It is hence desirable to use multimodal distributions in
order to model these cases in SLAM. Each mode in such
a distribution represents a candidate spatial transformation
the robot may have undergone. Please note that in this paper,
we use the word ‘multimodal’ to refer to a probability den-
sity function with multiple modes (local maxima), and not
to the use of multiple sensor modalities.

One may argue that in these ambiguous cases, particle-
filter-based SLAM (Murphy, 1999; Doucet et al., 2000;
Hahnel et al., 2003; Montemerlo and Thrun, 2003; Grisetti
et al., 2007b) is the ideal solution as it theoretically can han-
dle arbitrarily shaped distributions. Although this is correct
in theory, it is much more difficult in practice, as also sub-
stantiated by experiments presented in Section 3. The main
challenge is to limit the amount of particles to a reasonable
number to achieve good efficiency while also maintain-
ing good coverage of the probability density (Frese, 2006;
Grisetti et al., 2007b). Typical numbers of particles used in
the SLAM literature range from a few dozen to a few hun-
dreds; examples include 20 (Fairfield et al., 2006; Tomono,
2007), 30–40 (Stachniss et al., 2005), 20–160 (Welle et al.,
2010), 50 (Kuemmerle et al., 2009), up to 100 (Grisetti
et al., 2005), 100–200 (Marks et al., 2009), 200 (Schroeter
and Gross, 2008), 250 (Koenig et al., 2008), 400 (Barkby
et al., 2009), and 500 particles (Elinas et al., 2006; Fairfield
et al., 2007). Recent work also attempts to reduce the num-
ber of required particles or, conversely, to achieve better
results with the same number of particles. P-SLAM (Chang
et al., 2006, 2007) for example is designed to predict envi-
ronmental structures to work with less particles. One of
the most interesting contributions along this direction is
Grisetti et al. (2007b), where large maps are build with at
most 80 particles. This is achieved by using scan matching
to compute the proposal distribution, which again intro-
duces the assumption of a unique registration result and
thus biases the potentially multimodal particle distribution
towards unimodality.

Stachniss et al. (2007) identified the problem of multi-
modality in particle-filter-based SLAM and briefly inves-
tigated it. Their results clearly show that multimodal reg-
istration results, called proposal distributions in particle
filter terms, do occur and can have a negative impact on
the final mapping result if not taken into account prop-
erly. In the work of Stachniss et al., up to 100 particles

are needed with up to 6% multimodal proposal distribu-
tions over the whole trajectory. However, these potentially
multimodal proposal distributions are generated using a
unimodal odometry model as a reference and subsequent
hill-climbing for scan matching. Thus, the results gathered
by Stachniss et al. show that multimodality due to locally
ambiguous structure is even a problem worth considering
when taking odometry into account.

The number of particles used in the filter is usually seen
in the context of finding correspondences to previously vis-
ited locations, also referred to as loop closing: ‘At least one
particle of the set must already close that loop by chance,
and either many particles are needed or there will be gaps
in a loop already closed’ (Frese, 2006). Please note that the
number of particles needed to represent a multimodal dis-
tribution of pose transformations is a different issue. Each
mode represents a possible choice which way the robot may
have moved. Having to make many of these choices in a
row, and keeping track of all possible trajectories, leads to
a combinatorial explosion. Experimental results presented
in Section 3 indicate that 10,000 particles are not enough to
handle this situation consistently, even when there are just a
few bimodal or trimodal registrations.

One may ask whether the handling of multimodal reg-
istrations is an issue at all. If graph-based SLAM cannot
represent it by design and particle filter SLAM is suppos-
edly not suited for it in practice, then the obvious question
is why are there so many reports of successful applica-
tions of the two families of approaches in the literature. The
answer is simple. Spatial relations from registration results
are usually combined with motion estimates from odom-
etry. This kind of sensor fusion helps to compensate for
possible ambiguities in one sensor modality with a unique,
but quite uncertain, estimate in another one. Consider for
example a featureless hallway with a repetitive pattern as
described before, or a symmetric star crossing as motivated
in Figure 1. Odometry can approximately predict the correct
part of the pattern or help to disambiguate the symmetries in
the appearance of the crossing. It can also play a significant
role by weighting candidate transformations even if it is
very noisy. However, robots are increasingly used in appli-
cations where good motion estimates are inherently difficult
or require costly equipment. Examples include aerial and
underwater vehicles, as well as land robots operating on dif-
ficult terrain. However, Stachniss et al. (2007) also showed
that even when good unimodal odometry is available and
the robot operates in an indoor setting, multimodal motion
estimates still occur and should be explicitly dealt with. In
addition, SLAM has been predominantly investigated so far
in static environments. However, dynamic changes in the
scene, which cannot be avoided for many real-life applica-
tions, inherently lead to structural ambiguities. An example
here would be moving cars and rearranged furniture or other
equipment. Last but not least, multimodal effects may be
relatively rare but even a single bimodal registration where
the wrong choice is made can cause a severe distortion of
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Fig. 1. Structural ambiguity in the environment can be one source of registration errors, here for example in form of the crossing of
two corridors. Two scans (bottom left) are to be registered; one scan contains the corridor to the North while the other scan includes the
East corridor after the robot turned to the right. Using a simple correlation-based method to match the two scans, multiple maxima are
immediately visible in the resulting parameter space (top left). Some registration results corresponding to the local maxima are shown
on the right, ordered by quality. However, in this case, A is not the globally correct result, but C is.

the map in form of an effect known as brokenness (Birk,
2010).

There are three main contributions presented in this
article:

• First, the problem of ambiguous registration results
leading to multimodal distributions of local spatial
relations is addressed. This problem cannot be tack-
led with standard graph-based SLAM algorithms by
design as they assume unimodal distributions. Further-
more, it is shown that particle filter SLAM, which in
theory can handle this problem, is at least severely
challenged by it, especially when a good odometry
estimate is not available to mitigate the effects of
ambiguities.

• Second, an extension of the pose graph data structure is
introduced in form of multimodal edge constraints mod-
eled by mixtures of Gaussians (MoG), which is comple-
mented by suited optimization methods. These methods
are (a) robust iteratively reweighted least squares and
(b) Prefilter Stochastic Gradient Descent (SGD) where
a preprocessing step is used to determine globally con-
sistent modes before applying SGD (Olson et al., 2006).
In addition, a variant of method b) is introduced in form
of (c) Prefilter Levenberg–Marquardt (LM).

• Third, the benefits of MoG pose graph optimization
with the novel prefilter methods are further substan-
tiated with real-world experiments. It is demonstrated

how the MoG pose graph optimization can be used with
a concrete registration method and that it leads to supe-
rior results. Plane-based registration is used here as an
example for 3D mapping with two different data sets.

The rest of this article is structured as follows. The
remainder of this section will introduce maximum likeli-
hood SLAM with pose graphs as well as previous work
in this area, and present the extension to multimodal pose
graphs. In Section 2, several methods to optimize multi-
modal pose graphs are described. Experimental results on
several synthetic graphs are presented in Section 3. Section
4 focuses on experiments with real-world data, including
a method to generate multimodal results from a plane-
based registration algorithm. Finally, Section 5 concludes
the article.

1.1. Maximum likelihood SLAM

One very popular formulation of the SLAM problem is
probabilistic. Given a sequence of sensor readings z1:t and
control inputs (such as motor voltage) u1:t until time t,
compute the most probable map m and trajectory x1:t:

x∗1:t, m∗ = argmax
x1:t ,m

[p( x1:t, m|z1:t, u1:t) ] . (1)

After Thrun et al. (2005), this probability is factored as

p( x1:t, m|z1:t, u1:t) = p( x1:t|z1:t, u1:t) p( m|x1:t, z1:t) . (2)
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It is thus possible to estimate the trajectory separately from
the map.

Graph-based maximum likelihood SLAM methods
reduce the above full SLAM problem to a localization
problem in order to compute good estimates for the
trajectory x1:t;

x∗1:t = argmax
x1:t

[p( x1:t|z1:t, u1:t) ] . (3)

Deriving the map m∗ from the optimal trajectory x∗1:t is
trivial.

Formally, a pose graph is an undirected graph
G = ( V , E) consisting of vertices V and edges E. The ver-
tices vi ∈ V denote poses where the robot obtained sensor
observations zi. A pose estimate xi is also associated with
the vertex and thus is a tuple vi = ( xi, zi). In addition to
the vertices it connects, each edge ek ∈ E contains a con-
straint ck on the pose estimates of the associated vertices,
thus ek = ( vi, vj, ck). While the graph itself is undirected,
the edge has to declare a sort of observation direction, the
direction in which the constraint was generated. In case
the edge is traversed in reverse direction, the constraint c
must be inverted. What exactly that entails is up to the
representation of the constraint.

We consider the general case, where one such constraint
between vertices vi and vj is of the form

p( xj � xi|zi, zj, ui:j) (4)
def.=p( tj

i|zi, zj, ui:j) (5)

where� is the pose difference operator (Smith et al., 1990),
which produces the relative transformation tj

i from the coor-
dinate frame at vi (namely xi) to the frame at vj (xj), and ui:j

is the sequence of control inputs between the two. The con-
straint is generated, for example, by odometry or a sensor
data registration algorithm using zi and zj. In general, the
constraint c stored in the graph will have parameters that
depend on zi, zj, and ui:j. Thus, we will write

p( tj
i|zi, zj, ui:j)= p( tj

i|ck) for constraint k. (6)

It is now possible to express the probability of the robot
trajectory as a function of the constraints:

p( x1:t|z1:t, u1:t) =
∏

i

∏
j

p( xj � xi|zi, zj, ui:j) (7)

p( x1:t|G) =
∏

(vi,vj ,ck )∈E

p( xj � xi|ck) . (8)

As not all observations are directly related to each other,
the specific graph of constraints is used to formulate the
probability in a more intuitive way.

Previously, the constraint probability density (Equation
(6)) was exclusively modeled with a single multivariate nor-
mal distribution. This allowed to formulate very efficient
optimization algorithms to solve Equation (3).

1.2. Previous work in pose graph optimization

In the past, the constraint probability density functions
have been modeled as multivariate normal distributions as
follows:

p( tj
i|ck) = 1

|2π�k|1/2
e−

1
2 (t

j
i�μk )T�−1

k (t
j
i�μk ). (9)

Here, μk is the mean of the transformation estimate for
the constraint ck , and �k is the corresponding covariance
matrix. Note that |2π�k| = ( 2π )d |�k| if �k ∈ R

d×d

(Petersen and Pedersen, 2008).
In the context of optimization, the logarithm of the full

trajectory probability (Equation (8)) is most useful due to
its numerical stability and ease of computation:

ln p( tj
i|ck) = −1

2
ln (|2π�k|)− 1

2
(tj

i � μk)
T �−1

k (tj
i � μk)

(10)

ln p( x1:t|G) = −1

2

∑
(vi,vj ,ck )∈E

ln (|2π�k|)

− 1

2

∑
(vi,vj ,ck )∈E

( tj
i � μk)T �−1

k ( tj
i � μk) .

(11)

By neglecting the constant terms, this is turned into a cost
function equivalent to the sum of squared Mahalanobis
distances over all constraints.

cost( x1:t|G) =
∑

(vi,vj ,ck )∈E

( tj
i � μk)T �−1

k ( tj
i � μk) . (12)

This cost function was first described by Lu and Milios (Lu
and Milios, 1997).

Up to now, almost all pose graph optimization methods
have used the presented approach. Only the specific method
to find the global minimum of Equation (12) varies between
the known methods.

In their early seminal work, Lu and Milios (1997) solved
this optimization problem by iteratively linearizing Equa-
tion (12) around the current trajectory estimate, stacking
all constraint equations in a constraint matrix, and subse-
quently solving the resulting linear system. This procedure
results in incremental improvements to the complete tra-
jectory at each iteration and is closely related to Newton’s
method. However, the larger the pose graph, the larger the
constraint matrix that needs to be inverted. Later work, such
as that of Borrmann et al. (2008), extends this approach
to 3D and sparse constraint matrices, which speeds up the
method.

Golfarelli et al. (2001) introduced a kinetic perspective
on pose graph optimization by relating it to a truss struc-
ture with springs. More severe linearization artifacts as in
Lu and Milios’s work occur in the conversion to a truss
structure. In fact, rotational springs are represented as linear
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springs attached to a lever in order to be able to repre-
sent them in classical structural analysis terminology. As
a result, the employed method does not work well with non-
linearities introduced by rotational degrees of freedom, yet
still requires solving a large linear system.

Frese et al. (2005) employed a multi-scale representation
of the graph, a practice borrowed from the partial differ-
ential equation literature. Here, a variant of Gauss–Seidel
relaxation is applied to the graph at different levels of sub-
sampling for only a few iterations. Results are projected
up and down between levels to achieve fast global con-
vergence. Owing to its iterative nature, the method relin-
earizes the cost function at each step which corrects the
pose of one vertex at a time. The method thus properly takes
nonlinearities into account.

Dellaert’s
√

SAM (Dellaert, 2005) takes a Bayesian
network perspective on the SLAM problem. The robot’s
trajectory is modeled as a Markov chain, while the land-
marks and the measurements relating them to the robot
poses correlate multiple poses in the trajectory. Since the
robot has a limited field of view, the resulting linear
system is sparse and can be efficiently solved by spe-
cialized reordering and sparse Cholesky methods. Dellaert
also introduced the use of general least-squares methods
for SLAM.

Olson et al. (2006) published a very efficient and popular
method called stochastic gradient descent. The main contri-
bution lies in the reinterpreted state space of the pose graph.
Instead of using a set of global poses, as in the previously
described methods, Olson uses an incremental state, where
pose xt is the sum of all preceding pose increments

∑t
1 δxi

on a trajectory. In this state representation, following the
gradient of a single constraint has corrective side effects on
all poses xi:j in between the two poses xi and xj connected by
the constraint. Thus, the method is able to rapidly converge
to a good global estimate. This method has been extended to
a tree representation of the incremental state space (Grisetti
et al., 2007c) and to 3D pose graphs (Grisetti et al., 2007a).
An online variant also exists (Olson et al., 2007; Grisetti
et al., 2008).

More classical nonlinear least-squares methods, such as
Gauss–Newton and LM, were used by Dellaert (2005),
Hertzberg (2008), Grisetti et al. (2010), Konolige et al.
(2010), and Kümmerle et al. (2011). Grisetti et al. (2010)
reduce the iteration complexity by optimizing the graph
at different scales, much like the approach by Frese et al.
(2005). Hertzberg’s, Grisetti et al.’s, and Kümmerle et al.’s
methods (Hertzberg, 2008; Grisetti et al., 2010; Kümmerle
et al., 2011) implicitly linearize the trajectory estimate by
replacing the pose difference and compound operators by
linearized variants. This allows to update poses in the trajec-
tory (or landmark locations) easily and consistently. Küm-
merle et al. (2011) as well as Hertzberg (2008) aim at a
general framework for nonlinear least-squares optimization
applied to pose graphs that is easily extensible to differ-
ent vertex types (e.g. full pose, landmark location, etc.), yet

computationally efficient. Konolige et al. (2010) rather fol-
low a classical approach and mainly focus on assembling
the sparse linear subproblem in the LM method efficiently.

Sünderhauf and Protzel (2012) add an interesting exten-
sion to the work of both Dellaert (2005) and Kümmerle
et al. (2011), namely switch variables that are part of the
optimization and can switch off constraints. The marked
advantage of such an approach is that false loop closures or
misled registration results, i.e. spurious edges in the graph,
can be removed during the optimization.

1.3. The MoG pose graph

Particle and linear Gaussian distributions are at opposite
ends of the density complexity spectrum. Particle distri-
butions are very general, but usually hard to compute and
memory intensive. Linear Gaussians are easy to compute
and use, but are limited in their descriptive power. A distri-
bution family which is both more descriptive than single
linear Gaussians and less computationally complex than
particle distributions is hence an interesting option for
modeling the density in Equation (6).

In this article, we explore the possibility of using a MoG
in Equation (6). This has several advantages. Most impor-
tantly, a mixture can represent multimodal densities which
may arise due to ambiguities in the sensor data registra-
tion. In addition, a mixture can approximate non-Gaussian
and nonlinear distributions with a single mode as well, e.g.
generated by odometry error models (Thrun et al., 2005).

The usual reason quoted for using single Gaussians in
SLAM and state estimation in general is the central limit
theorem (Feller, 1945). It states that if arbitrarily distributed
random variables are added many times, e.g. through pose
composition, the distribution of the resulting random vari-
able is Gaussian in the limit. However, since one constraint
is not directly combined with other constraints (it may
be for the purpose of the final estimation and optimiza-
tion algorithm, but not conceptually) this theorem does not
apply. Thus, too much important information is lost when
using overly simplified Gaussian distributions already in the
constraints.

From a practical perspective as motivated above it is
also of interest to be able to represent multimodal regis-
tration results. Consider again the example shown in Figure
1 with the two scans containing two different corridors at a
crossing. The global optimum of the registration by cross-
correlation is A, while the correct result would be C. As
shown experimentally in Section 3, standard graph-based
methods are extremely sensitive to wrong motion estimates
which give rise to inconsistent constraints in the graph. This
occurs when only the most prominent registration result
is taken into account (A in the example), even if such
situations only occur very rarely in the complete mapping
process. The remedy is to represent all local optima of
the registration that are also likely candidates of being the
correct solution, thus covering all feasible motions and
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allowing the optimization method to infer the correct one.
Note that according local optima can be easily identi-
fied in not only cross-correlation-based scan-matching but
also in various other registration methods. It is for exam-
ple straightforward to extend existing spectral (Pfingsthorn
et al., 2010) or random sampling consensus (RANSAC)-
based (Fischler and Bolles, 1981) registration methods to
produce a MoG as the registration result. For example, in
the case of the iFMI spectral registration method (Pfin-
gsthorn et al., 2010), the result is a sort of histogram of
potential registration results. It is only a matter of fitting a
MoG to the histogram, by using e.g. expectation maximiza-
tion. In RANSAC-based methods, the only change needed
is to keep track of the N most congruent samples instead of
just the best one. In iterative methods such as iterative clos-
est point (ICP) (Besl and McKay, 1992), local optima can
for example be identified by perturbing the starting condi-
tions, as in (Stachniss et al., 2007). A specific example is
given in Section 4.1, which describes how MoG registra-
tion results are generated with a plane-based 3D registration
method (Pathak et al., 2010c) used in the experiments with
real-world data.

It is important to note that there is a significant differ-
ence between global and local data association, and hence
in the ambiguity inherently present in each of these prob-
lems. We define global data association to be what is more
commonly called loop detection or place recognition. Here,
the main problem is to find observations made some time
ago that match the current one. This should generally lead
to the generation of a new edge between the current vertex
and another, much older, vertex generated during a previous
visit to the current location.

On the other hand, we define local data association to
be the search for true correspondences in two consecu-
tive observations. In this case, it is very likely that the two
observations do match, but ambiguities may occur due to
the environment structure, occlusions, or dynamic changes
in the environment that are not decidable given only these
two observations. We define this kind of ambiguity as local
ambiguity. This case is very efficiently modeled by using
mixtures in edge constraints as proposed in this article, and
it is possible to resolve these only by considering the map
as a whole.

Note that global data association is orthogonal to local
data association. It is possible to detect loops without know-
ing the exact and unique transformation between the stored
and current observations. More precisely, global data asso-
ciation involves a probability mass function over all loop
hypotheses, i.e. the existence of feasible edges, explicitly
including the null hypothesis of the non-existence of a loop
at the current vertex. For example, Sünderhauf and Protzel
(2012) specifically allow for a single loop-closure hypothe-
sis, i.e. the existence of an edge, and the null hypothesis, i.e.
the non-existence. Local data association involves a proba-
bility mass function (the component weights) over all pos-
sible transformation hypotheses between two observations.

Both have to be estimated, and both may coexist at the same
time.

Consistency checks such as single-cluster spectral graph
partitioning (SCGP) by Olson (2009) can be used to solve
the global data association problem. However, Olson explic-
itly rejects locally ambiguous results in the loop detection
step. If a good multimodal local data association method
was used, this would not be necessary. In previous work,
Olson also demonstrated how to register two laser scans
with SCGP (Olson et al., 2005), which may be applica-
ble to the local data association problem. However, as the
potential ambiguity is an inherent part of the observation
itself, no algorithm will be able to solve a truly ambigu-
ous registration using only local information. In addition,
if SCGP was to be used to resolve local ambiguities, i.e.
choosing one of the local motion hypotheses for all edges,
it would require a polynomial-time pairwise compatibility
metric which does not exist in the case of multimodal pose
graph, at least not in the form described in Olson (2009).
As there potentially exist exponentially many paths between
two vertices depending on which combination of compo-
nents are chosen on the way, computing the consistency of
a single loop already has exponential cost.

Thus, a global method is indeed needed to solve the local
data association problem if ambiguities occur. However,
this method should not only deal with mutually exclusive
choices to solve local ambiguities, but at the same time also
allow more versatile and nonlinear probability densities.
The most natural and elegant solution is thus to combine
the global optimization step with the global solution to the
local data association problem.

The change in parameterization of the density in Equa-
tion (6) has far-reaching consequences for the optimization
of the resulting MoG pose graph. A general mixture model
is formulated as follows (Titterington et al., 1985):

p( x)=
M∑

m=1

p( m) p( x|m)=
M∑

m=1

πmp( x|m) (13)

where
∑M

m=1 πm = 1 and πm ∈( 0, 1]. We make the explicit
extension that a single component weight πm is 1 if and
only if the mixture contains only one component. While
technically not being a mixture, this allows constraints to
include the classical case of single Gaussian distributions
as described above. In our case, each component density
p( x|m) is a multivariate Gaussian with mean μm and covari-
ance �m as defined in Equation (9). Therefore, each con-
straint c = ( {πm}, {μm}, {�m}, Mk). Also, we denote the
number of components on constraint k as Mk . Thus, the
joint probability of a MoG pose graph is

p( x1:t|G)=
∏

(vi,vj ,ck )∈E

Mk∑
m=1

πmp( tj
i|μm, �m) . (14)
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Unfortunately, the log probability is not as easily computed
as in the unimodal case due to the sum of the mixture:

ln p( x1:t|G) =
∑

(vi,vj ,ck )∈E

ln

[ Mk∑
m=1

πmp( tj
i|μm, �m)

]
. (15)

However, since a MoG constraint is rather the exception in a
MoG pose graph, this form is still desirable since it is com-
patible with the more numerous single Gaussian for which
Equation (10) still holds if Mk = 1.

ln p( x1:t|G) =
∑

(vi,vj ,ck ) ∈E

·
{

ln
[∑Mk

m=1 πmp( tj
i|μm, �m)

]
, if Mk �= 1 or

− 1
2 ln (|2π�1|)− 1

2 ( tj
i � μ1)T �−1

1 ( tj
i � μ1) .

(16)

Here, it is not possible to neglect the constant terms of
the Gaussian distribution since the relative scaling of the
component covariances in the mixture matters.

Owing to the significant reformulation of constraints,
previous optimization approaches are only partially appli-
cable with a less restrictive distribution family and local
ambiguity. Many assumptions are violated when moving
from a single Gaussian to a mixture.

2. MoG pose graph optimization

2.1. Particle filter

As particle filters for SLAM (Thrun et al., 2005) can deal
with arbitrary distributions, they can also be considered as
an option for optimizing MoG pose graphs. Classical parti-
cle filters estimate the trajectory of the robot over time. At
each step, hypotheses about the new robot pose are sampled
from a proposal distribution, such as an odometry model or
registration result. During the resampling phase, only good
particles, i.e. ones with a high probability, are drawn into
the new particle population for the next step.

A single particle iteration thus depends on two steps: A
way to draw samples from a proposal distribution, and a
way to evaluate the importance of a single particle. Both is
relatively straightforward when dealing with a pose graph
containing MoG.

Sampling from a constraint probability density which is
a MoG consists of two steps. First, a component is cho-
sen according to the mixture probabilities πm (Equation
(13)). Then, a sample is drawn from the selected component
distribution.

Evaluating a particle’s importance is equivalent to eval-
uating the pose graph joint probability as described in
Equation (8). This gives rise to the particle-based optimiza-
tion algorithm (Algorithm 1), which is very similar to that
described by Stachniss et al. (2007).

Instead of following the robot trajectory, which might
be suboptimal for estimation, our particle-based optimiza-
tion approach samples all edges that form a spanning tree

Algorithm 1: Particle-based optimization of a MoG
pose graph.

Input: MoG PoseGraph G, maximum number of
particles N , minimum effective number of
Particles Nmin (usually N

2 )
Output: optimized vertex poses x1:t

initialize particle set xi
1 = 0, i = 1 . . . N ;

initialize particle weights wi = 1
N , i = 1 . . . N ;

for all breadth-first edges from v1, ( va, vb, c)∈ E do
if pose b already set then

continue;
end
y = x;
for i = 1 . . . N do

sample t ∼ p( xk|ck);
y[i]

b = x[i]
a ⊕ t;

w[i] =
∏

(va,vb,c)∈E:isset(xa)∨isset(xb)

p( y[i]
b � y[i]

a |c);

end
normalize particle weights w;
if 1∑N

i (w[i])2 > Nmin then

continue;
end
for i = 1 . . . N do

draw n ∝ w[n] using the low variance sampler
from Thrun et al. (2005);
x[i] = y[n];

end
end
i∗ = argmax

i
w[i];

x1:t = x[i∗]
1:t ;

from the first vertex in the graph v1. This is easily imple-
mented using a breadth-first traversal, neglecting edges that
connect to already visited vertices. Such a traversal guaran-
tees the shortest paths to all vertices, which in turn means
that the least amount of sampled transformations have to
be compounded to estimate global vertex poses. Therefore,
a breadth-first traversal minimizes the number of particles
needed for consistent sampling.

For each spanning tree edge, the underlying constraint
density is sampled N times, once per particle. The pose
estimate for the newly discovered vertex is formed by com-
pounding the sampled transformation with the particle’s
estimate of the current vertex pose. Then, the particle prob-
ability is given by evaluating all edge constraints which con-
nect vertices where the pose estimate is already set. Only if
the effective number of particles, computed as

Neff = 1∑N
i ( w[i])2

(17)

is less than the desired effective number of particles Nmin

(usually half the number of particles N), the resampling
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step draws N particles from the temporary set of particles,
with replacement. Here the low variance sampling algo-
rithm from Thrun et al. (2005) is used. When all spanning
tree edges have been processed, the best particle is chosen
as the optimization result.

The main drawback of this method is particle
exhaustion. A significant amount of particles is needed to
consistently sample mixture densities with more than one
component, many more than typically used in particle-filter-
based SLAM methods. This is especially the case with
deep graphs, i.e. where the spanning tree is deep, or when
MoG constraints are encountered early in the breadth-first
traversal.

The second drawback is that all pose estimates are dis-
cretized at the time of sampling the constraint distribution.
Thus, the best particle after running the optimization only
approaches the global maximum of the joint probability
as N → ∞. Even if sufficiently many particles are used
to consistently sample the underlying pose graph, the best
sample only approximates the global maximum.

2.2. Reduction methods

It is possible to divide the multimodal pose graph opti-
mization problem into two separate subproblems. First,
find a unimodal replacement density for all edge mixtures.
Then use a known optimization method, e.g. any of those
described in Section 1.2, to optimize the resulting unimodal
pose graph in a second step. This is denoted as the reduc-
tion approach, which is interesting as it allows to use well-
established methods from the literature in the second step.
However, the first subproblem is not trivial.

The reduction approach is related to least trimmed
squares (LTS), a robust least-squares formulation. The gen-
eral idea behind LTS (Rousseeuw and Leroy, 2005) is to
make a binary decision which terms of the quadratic func-
tion to keep and which to drop as outliers. If the binary
decision can identify outliers reliably, then this method
works very well. Unfortunately, there is no universal way
of computing these decisions. Therefore, a few different
approaches to solve this problem are presented below.

2.2.1. Basic methods: Exhaustive, Max, and Multi-Edge
The most obvious and naïve solution is to exhaustively
try all component combinations to generate a number
of unimodal pose graphs, or candidate decisions on which
superfluous modes to drop in the first step. Each candi-
date is optimized and if the final negative log probability
as evaluated in the original MoG pose graph is less than
the previously recorded minimum, this result is kept. Such
an exhaustive search is hence optimal in the sense that it
finds the best possible solution that can be achieved with the
given optimization method used in the second step. In addi-
tion, it converges to exactly the same result as if the MoG
pose graph contained no ambiguity to start with, and thus
represents a canonical baseline for comparison. However, it

also takes a very long time to complete as it involves a com-
binatorial explosion. In the experimental results below, this
method for the first step is referred to as Exhaustive.

Another possibility for the first step of finding a unimodal
replacement is to only use the component of each mixture
with the largest weight. This corresponds to neglecting the
multimodality altogether and mirrors what happens in the
classical case where only unimodal densities are consid-
ered, i.e. in state-of-the-art graph SLAM methods. In the
experiments below, this filtering method is referred to as
Max.

Furthermore, given that the underlying optimization
method can process it, it is also possible to treat each com-
ponent as a separate edge. Note that this results in a graph
with more than one constraint between two vertices, also
known as a multigraph. This can be considered as a case
where no filtering is done at all. However, it does not change
the cost function as described in Equation (12) in itself; it
only adds more terms. A possible underlying method using
a robust cost function, an approximation to the one from
Equation (12), may still converge to a good solution. Since
all components are regarded as separate edges, and thus
form a multi-edge, the method is referred to as Multi-Edge.

2.2.2. Prefilter The most optimal reduction method would
compute the choice of components that the exhaustive
method uses without having to try all others. The prefilter
method described in this section aims to approximate this
choice as quickly as possible by employing ideas from the
particle method. Specifically, the method assigns global ver-
tex poses and uses a simple heuristic to select globally
consistent components for further optimization.

The important insight here is that it is not necessary to
traverse the complete graph in order to assign global poses
to each vertex. Only a spanning tree has to be traversed,
as in the particle filter implementation described above.
Thus, to reduce the number of possible global poses for
each vertex during this traversal, the minimum spanning
tree with respect to the number of components on each
edge constraint is used. Specifically, the edge weight w( e)
is not uniform (as in Grisetti et al., 2007c), but is equal to
the number of components, so w( ek)= Mk . This in effect
chooses the least ambiguous spanning tree in order to track
the least amount of combinations needed to assign global
poses. Edges with high ambiguity are skipped if possible
and non-ambiguous edges are preferred. In addition, the
specific edge distributions are not randomly sampled as in
the particle filter method, only the component means are
used. This significantly speeds up the method with respect
to a full particle filter as described in Section 2.1.

Algorithm 2 shows how to incrementally follow mini-
mum spanning tree edges using Prim’s algorithm (Cormen
et al., 2001) and to assign multiple global poses to each
vertex. In order to trade off time and memory requirements
versus accuracy, only the most probable N assignment sets
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Algorithm 2: An algorithm to find a good approxima-
tion to the globally correct choices of components.

Input: MoG PoseGraph G
Input: maximum number of hypotheses N
Output: X: a set of N sets of vertex poses X = {xi}
X = {{x1}};
Vused = {v1};
Eused = ∅;
initialize priority queue P to sort by number of
components;
for all adjacent edges e of v1 do

enqueue(P, e);
Eused = Eused

⋃
e;

end
while P not empty do

e = dequeue(P);
( vstart, vend) = vertices(e);
for all adjacent edges eadj /∈ Eused to vstart or vend

do
enqueue(P,eadj);
Eused = Eused

⋃
eadj;

end
if vstart /∈ Vused then

vnew = vstart;
vold = vend;
let means contain the inverse of all means
(spatial transformations) of the mixture in e;

else
vnew = vend;
vold = vstart;
let means contain all means (spatial
transformations) of the mixture in e;

end
for each hypothesis X ∈ X do

xold = pose of vold in X ;
X = X \ X ;
for each mean in means do

X = X
⋃{X ⋃

( xold ⊕ mean) };
end

end
if |X| > N then

sort X by joint probability of assigned vertex
poses per hypothesis;
truncate X to contain only the N most probable
elements;

end
end

are kept after each iteration. The algorithm is determinis-
tic, it produces the same sets of global pose assignments
given the same parameters. This is especially useful as it
allows for a fast and consistent filtering of congruent pose
estimates in the MoG pose graph.

Only the global pose assignment set that is most proba-
ble, i.e. the best ranked set after algorithm (Algorithm 2),
is used to select the component of each edge mixture for

further optimization. For each edge, the pose difference
tj
i = xj � xi between the two connected vertices vi and

vj is computed based on their assigned global poses from
this set. Then the component which assigns the highest
weighted probability, its net contribution to the full mixture
probability, to the pose difference is chosen. Concretely, the
selected component is

m∗ = argmax
m

[
πmp( tj

i|m)
]

(18)

or, equivalently,

m∗ = argmax
m[

2 ln

(
πm

|2π�m|
)
− ( tj

i � μm)T �−1
m ( tj

i � μm)

]
. (19)

This method is denoted as Prefilter.
Also other approaches were considered and tested,

including:

• random selection of components during each iteration;
• greedy selection of most probable components during

each iteration;
• greedy selection of closest components based on resid-

ual during each iteration;
• random selection of components, subsequent optimiza-

tion, and finally reporting the best result (RANSAC
like).

However, each of these more heuristic methods did not per-
form well, especially in comparison with the above Prefilter
method, and they are thus not included in the discussion
here for space constraints.

2.2.3. Optimizing the resulting unimodal pose graph For
the second step of optimizing the resulting unimodal pose
graph, two state-of-the-art methods are used.

First of all, an improved version of Olson’s SGD (Olson
et al., 2006) as implemented in the popular TORO library
(Grisetti et al., 2007c) is used. An important detail of this
implementation, and SGD in general, is that it uses a rel-
ative parameterization of the vertex poses, such that any
vertex pose is computed as the sum of relative pose incre-
ments from the start of the trajectory to itself. In particular,
TORO uses a spanning tree for this relative parameteriza-
tion in order to make better use of the underlying graph
structure. Only the pose increments of each vertex relative
to its parent in the spanning tree are changed during opti-
mization. This allows good global convergence because the
actual global vertex poses change significantly when small
increments are applied to the relative poses, and SGD is
thus less likely to find local minima. However, the optimiza-
tion may also oscillate significantly, which is managed by a
step size schedule which reduces the step length every iter-
ation. In addition, due to speed considerations, a diagonal
approximation of the Hessian is used in SGD, which may
reduce convergence speed and accuracy.

 at Universitaetsbibliothek on October 26, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


10 The International Journal of Robotics Research 0(0)

Furthermore, a sparse LM method as implemented in the
g2o library (Kümmerle et al., 2011) is employed. LM is a
very well known least-squares method, and is guaranteed
to converge, but only to the nearest optimum. The method
can not jump out of one basin of convergence to another,
as SGD can, which makes it even more important to find
a good initial guess. In contrast to SGD, LM uses the full
hessian information, and thus also off-diagonal elements
of the constraint covariances, which is expected to make it
converge faster. The g2o library implements a robust least
squares formulation, namely iteratively reweighted least
squares (IRLS), and is thus the only method usable for
the Multi-Edge approach. In this method, each constraint is
assigned a weight in each iteration dependent on the current
residual. The g2o library utilizes the Huber cost function
(Huber, 1973), which is quadratic close to zero, and linear
with larger residuals, but still smooth and convex. In the-
ory, this should allow the LM method to behave well even
in the presence of outliers such as inconsistent constraints
in the graph. The robust LM formulation is denoted with
LM in all methods below that use it as second step, except
in the exhaustive case where no outliers due to the incorrect
selection of modes are expected.

In the following, all reduction methods are denoted with
the according prefix for the first step and the related postfix
for the second step. For example, Exhaustive SGD refers
to exhaustive filtering as a first step for finding a uni-
modal replacement in combination with SGD as subsequent
unimodal optimization in the second step. Accordingly,
Exhaustive LM is the combination of exhaustive filtering
with LM optimization.

Thus, the complete list of reduction methods includes

• Exhaustive SGD and Exhaustive LM;
• Max SGD and Max LM;
• Multi-Edge LM;
• as well as Prefilter SGD and Prefilter LM.

3. Experiments with synthetic data

The discussion of experimental results is split into two dis-
tinct parts. This section focuses on a systematic evaluation
and characterization of the proposed optimization methods
using synthetic MoG pose graphs to motivate and analyze
the generic aspects involved in multimodal graph SLAM.
The synthetic data sets have the important advantage that
the amount of multimodality in the constraints can be eas-
ily controlled and varied. In particular, it will be shown that
standard SLAM methods, in particular traditional graph-
based and particle filter SLAM methods, are challenged
by ambiguous registration results. Furthermore, MoG pose
graphs that model these ambiguities in constraints with
multimodal distributions together with Prefilter SGD/LM
optimization are a very promising alternative for this case.
Ground truth data is used to quantify the quality of the final
map using the state squared error (SSE) metric by Olson
(2008), see also Appendix B.

Section 4 then describes the application of MoG pose
graphs in the context of a concrete registration method to
generate 3D maps. There, real-world data sets are used
to further substantiate that MoG pose graphs with Pre-
filter SGD/LM optimization produces significantly better
results than standard graph-based and particle filter SLAM
methods.

3.1. Results of systematic evaluation with
varying multimodality

Synthetic pose graphs were generated to test the presented
methods in depth. A total of 110 different random pose
graphs are used, broken up into 11 separate cases with vary-
ing complexity with respect to the amount of multimodality
in the constraints. In all cases, multimodal constraints are
assumed to be an exception, i.e. most edges contain a stan-
dard Gaussian and only a few contain a mixture. Also,
the number of modes in case of mixtures is quite small.
As will be shown, even these relatively small amounts of
multimodality have significant effects. All 110 graphs are
generated from the same environment as shown in Figure 2.
The exact algorithm to generate the graphs is included in
Appendix A.

The degree of multimodality plays a significant role in
the shape of the log probability function. As this effect is
mainly due to the combinatorial properties of pose compo-
sition in the graph with multiple components, we can define
the following complexity metric:

C( G)= log2

⎛
⎝ ∏

(vi,vj ,ck )∈E

Mk

⎞
⎠ = ∑

(vi,vj ,ck )∈E

log2( Mk) . (20)

For example, a graph with a single two-component edge
and all other edges being unimodal would have a multi-
modal complexity of C( G)= 1. In condition 8, a graph with
five three-component edges has a complexity of C( G)=
log2( 35)= 7.92. Similarly, a graph without any MoG con-
straints would have a C( G)= 0. The different cases con-
sidered for the experiments in this article are shown in
Table 1.

Each method described in Section 2 was used to optimize
each generated pose graph. As traditional optimization
methods used for comparison with the standard unimodal
case, the Max SGD and Max LM methods are assumed
not to know about multimodal constraints, and thus are ini-
tialized with a breadth-first assignment of poses using the
maximum component for each edge. Prefilter SGD and Pre-
filter LM, as well as Multi-Edge LM, are initialized with the
most probable set of global vertex poses produced with the
prefilter step described in Section 2.2.2. Here, N = 200 was
chosen for the good trade-off between computation speed
(≈ 2 ms) and accuracy. Only the best result of these was
used as the initial condition for optimization and to select
modes as described above. The Particle method did not need
initialization, and since it is not deterministic it was run 10
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Fig. 2. An example multimodal pose graph of complexity C( G)= 4, meaning it contains four two-component mixtures, all other edge
distributions are unimodal Gaussians. Top: Result of the Max SGD and Max LM methods, respectively. Edges that are assigned a low
probability transformation are shown in dark gray/magenta. The ground truth is shown in light gray in the background. Note that this
method is the standard up to now. Bottom left: Result of the Particle method with 10,000 particles. Bottom right: Optimization result of
the Prefilter SGD method.

Table 1. The 11 conditions used in the experiments with their different amounts of multimodal edges and their degree of multimodality
C( G). The overall percentage of multimodal edges (MM%) is also shown. On the right, the minimum Euclidean and squared Maha-
lanobis distances between two components from the same mixture are also shown. On average, components were located 189.045 units
from each other, with an average Mahalanobis distance of 20,825.7.

Condition C( G) Number of edges with X modes
MM Minimum Minimum

X = 1 X = 2 X = 3 X = 4 % distance Mahalanobis

1 1 255 1 0 0 0.4 38.996 509.816
2 2 254 2 0 0 0.8 15.909 160.058
3 3 253 3 0 0 1.2 70.701 1917.990
4 4 252 4 0 0 1.6 29.372 428.785
5 8 248 8 0 0 3.2 21.000 416.107
6 16 240 16 0 0 6.4 5.428 9.109
7 32 224 32 0 0 12.8 12.322 134.981
8 7.92 251 0 5 0 2.0 6.957 180.949
9 8 252 0 0 4 1.6 5.419 98.743
10 15.92 244 6 5 1 4.8 25.285 362.238
11 31.85 232 12 10 2 9.6 6.052 60.956

times per graph. All other methods are deterministic and
thus did not need additional trials.

Table 2 summarizes the number of trials that delivered a
result within five times the residual of the Exhaustive SGD
method, which is a canonical comparison basis as it rep-
resents the best achievable result by all methods described
in this paper. Exhaustive LM did not perform quite as well
on these graphs, most probably due to the differences in the
underlying SGD and LM optimization methods (see Section
2.2.3). Both methods are initialized with the same graph and
starting conditions. LM is very sensitive to the starting con-
ditions, while SGD is slightly more robust in that respect.

LM was run without the robust cost function for the exhaus-
tive case, since no outliers are expected due to small errors
in the reduction process. At large, the differences between
LM and SGD in the exhaustive case are coincidental and not
of concern in this paper. They are to show what is achiev-
able with either method, and mainly used as a comparison
basis with the reduction heuristics discussed below.

From this brief summary, it is clear that the standard
graph-based methods Max SGD and Max LM do not work
well with multimodal registration results, even if there are
only very few of them. Max LM can sometimes achieve
reasonable results in a few relatively simple conditions,
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Table 2. Successes by method and condition (Table 1) in terms of the number of trials that produced a result within 5 times the SSExy

and SSEθ error of the exhaustive SGD method. The particle method used 10,000 particles.

Condition Max LM Max SGD Particle Multi-Edge LM Prefilter LM Prefilter SGD

1 40% 60% 0% 40% 80% 100%
2 0% 40% 0% 0% 0% 100%
3 30% 0% 0% 0% 60% 100%
4 40% 0% 0% 0% 60% 100%
5 20% 0% 0% 0% 40% 100%
6 0% 0% 0% 0% 50% 100%
7 0% 0% 0% 0% 70% 90%
8 20% 0% 0% 0% 70% 100%
9 20% 0% 0% 0% 60% 100%
10 0% 0% 0% 0% 70% 100%
11 0% 0% 0% 0% 50% 100%

mostly because of its robust cost function. Max SGD only
achieves very few good results in two simplest conditions.
With increasing complexity, the Max SGD and Max LM
methods do not achieve any reasonable results anymore.
It is also clear that the Particle method often fails to con-
verge, especially with very multimodal graphs, even though
an extremely large number of 10,000 particles was used.

More surprising is the complete failure of the Multi-Edge
LM method. It appears that instead of converging to a single
mode per constraint, it converged to some configuration in
between multiple modes. Thus, the final distance to ground
truth is quite large.

The performance of the Prefilter SGD method proposed
here is much better and more consistent. It achieves a very
accurate result in nearly all cases. An illustrative example
result of the Max SGD/LM and Prefilter SGD methods is
shown in Figure 2.

Figure 3 shows the distribution of SSE residual errors
after optimization for each method by condition. Since
these distributions can be very skewed, the five-number
summary (minimum, lower quartile, median, upper quar-
tile, and maximum) was used to better represent the perfor-
mance of each method in these figures. The figure shows
that Prefilter SGD’s performance is almost identical to the
Exhaustive SGD method, which obviously requires substan-
tially more computation time. Here, it is also clear that
Exhaustive LM and Prefilter LM converge to nearly the
same result as well. The difference of the final results is
rather caused by the differences between the underlying
SGD and LM optimization methods, not the quality of the
Prefilter approach.

The Multi-Edge LM method takes all components into
account, but not their weights. Unfortunately, the conceptu-
ally interesting Multi-Edge LM method presents similarly
bad results as the Max SGD/LM methods. In the lower com-
plexity graphs it performs well, but it diverges significantly
already at a complexity of 8 (condition 5) or more.

The high similarity of results achieved by the Prefilter
and exhaustive methods, when used with the same under-
lying optimization method, shows that the Prefilter step
as described in Section 2.2.2 allows a very close approxi-
mation of the combination of modes used by the exhaus-
tive method in significantly less time. While the exhaustive

(a)

(b)

Fig. 3. Performance of each method by condition. Reported fig-
ures are the minimum, lower quartile, median, upper quartile,
and maximum of the residual SSE errors relative to ground truth.
Smaller is better. The marker location specifies the median, a ver-
tical line is drawn between the minimum and maximum, and hor-
izontal line ticks indicate the quartiles. In some cases, the median
marker may occlude the quartile marks. Note the logarithmic scale
on the y-axis. Here SSExy is shown in the top graph, the bottom
shows SSEθ .

search requires exponential time in the graph complexity,
i.e. O( 2C(G)), the filtering is done in O( |V |). Since the opti-
mal combination is only approximated, the filtering can
report a wrong assignment, which happened for example
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Table 3. Runtimes (means and standard deviations) in seconds by method and condition. The experiments were run on an Intel Core
i7-2720QM, 2.2 GHz, 8 GB RAM. All implementations were done in C++. The Particle method used 10,000 particles.

Condition Exhaustive Exhaustive Max Max Multi-Edge Particle Prefilter Prefilter
LM SGD LM LM LM LM SGD

1 0.0333 0.0659 0.0262 0.0298 0.0452 2.2399 0.0231 0.0392
σ0.0056 σ0.0022 σ0.0112 σ0.0010 σ0.0307 σ0.0591 σ0.0083 σ0.0262

2 0.1447 0.1390 0.0350 0.0322 0.0306 2.2329 0.0224 0.0299
σ0.0969 σ0.0025 σ0.0174 σ0.0031 σ0.0208 σ0.0466 σ0.0072 σ0.0005

3 0.2544 0.2755 0.0553 0.0303 0.0522 2.5432 0.0269 0.0309
σ0.1393 σ0.0091 σ0.0568 σ0.0009 σ0.0328 σ0.4449 σ0.0081 σ0.0021

4 0.4504 0.5494 0.0475 0.0310 0.0691 2.4625 0.0356 0.0309
σ0.2660 σ0.0153 σ0.0380 σ0.0023 σ0.0533 σ0.3710 σ0.0138 σ0.0023

5 18.5471 8.9363 0.0227 0.0303 0.0762 2.8486 0.0245 0.0301
σ8.5286 σ0.2580 σ0.0058 σ0.0013 σ0.0416 σ0.4083 σ0.0098 σ0.0012

6 ≈ 103.7 ≈ 103.3 0.0376 0.0297 0.0533 2.6239 0.0322 0.0308
– – σ0.0352 σ0.0012 σ0.0435 σ0.4432 σ0.0084 σ0.0027

7 ≈ 108.5 ≈ 108.2 0.0719 0.0298 0.0423 2.8482 0.0354 0.0305
– – σ0.0274 σ0.0009 σ0.0304 σ0.3115 σ0.0111 σ0.0021

8 18.0294 4.1744 0.0202 0.0310 0.0534 2.5284 0.0205 0.0298
σ8.7641 σ4.1132 σ0.0079 σ0.0021 σ0.0293 σ0.3911 σ0.0070 σ0.0008

9 12.4474 4.4003 0.0465 0.0305 0.0790 2.8559 0.0385 0.0304
σ8.7379 σ4.3367 σ0.0352 σ0.0017 σ0.0316 σ0.3266 σ0.0167 σ0.0014

10 ≈ 103.7 ≈ 103.7 0.0738 0.0306 0.0402 2.7521 0.0289 0.0304
– – σ0.0500 σ0.0005 σ0.0330 σ0.3410 σ0.0063 σ0.0015

11 ≈ 108.4 ≈ 108.4 0.0287 0.0313 0.0295 2.5556 0.0276 0.0316
– – σ0.0166 σ0.0016 σ0.0209 σ0.3424 σ0.0076 σ0.0017

in condition 7 where especially Prefilter SGD produced a
larger variance of results (see both Table 2 and Figure 3).

The Particle method did not converge to a good
result consistently, even with 10,000 particles. It appears
that the globally best particles are assigned too little
probability early on in the filtering process and are thus
filtered out during the resampling phase. However, even
further increasing the number of particles significantly did
not show much improvement; neither did increasing or
lowering the minimum effective particle count Nmin in
algorithm 1.

Another interesting observation is that the residual error
to ground truth of the Max SGD and Max LM methods, as
shown in Figure 3, actually increases exponentially with the
graph complexity C( G) (note the logarithmic scale). The
more complex the graph, the worse the approximation that
Max SGD/LM relies on.

Table 3 shows measured runtimes by method and con-
dition. The Max SGD/LM, Multi-Edge LM, and Prefilter
SGD/LM methods have nearly constant runtimes, as their
computational cost is dominated by the underlying SGD or
LM implementation, which in turn depends only on the size
of the graph.

The filtering of components only requires around 1 ms
for the specific size of the graphs studied here, which results
in a very small increase of computation time in the Prefilter
SGD/LM methods. Some runtimes of Exhaustive SGD and
Exhaustive LM were not recorded, as the exponential factor
would have made the experiment infeasible, e.g. individ-
ual trials in conditions 7 and 11 would have taken almost
10 years to complete. However, because the ground truth is

Table 4. Additional trials of Prefilter SGD to investigate its
asymptotical behavior. Note the exponential complexity. The
mean runtime is shown in seconds. Means and standard devia-
tions of the final SSE error are reported. As in Table 2, successful
trials are reported as a percentage within five times the SSE error
of Exhaustive SGD.

C( G) 32 64 128 256 512
Runtime (s) 0.03 0.05 0.93 44.32 232.22
Successes 100% 80% 10% 20% 0%
SSExy 51.07 535.46 3,250.20 5,255.02 155,257.52

σ16.86 σ840.28 σ3,654.21 σ5,607.53 σ348,952.17
SSEθ 0.00 0.03 0.08 0.22 0.91

σ0.00 σ0.07 σ0.05 σ0.17 σ1.34

known, it was still possible to compute the ideal results by
only considering the correct combination.

Note that Table 4 shows a few additional results to pro-
vide some idea of the asymptotical behavior of Prefilter
SGD. More graphs of the same size as those described in
Table 1 were generated with up to 11 modes per edge and
a complexity of up to C( G)= 512. In the most complex
graph, only a single edge was left with a unimodal Gaus-
sian constraint. The table shows the predicted combinatorial
explosion.

3.2. The influence of good odometry estimates

We believe that good odometry estimates are the single
most important factor that allowed traditional methods to
succeed so far. In order to substantiate this postulate, and
also to compare with the results achieved by Stachniss et al.
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(a)

(b)

Fig. 4. Performance of the Particle method by condition and dif-
ferent levels of fused odometry. Reported figures are the mini-
mum, lower quartile, median, upper quartile, and maximum. The
marker location specifies the median, a line is drawn between the
minimum and maximum, and line ticks indicate the quartiles. Note
the logarithmic scale on the y-axis. Here SSExy is shown in the top
graph, the bottom shows SSEθ . Also, note the different number of
particles used for the three cases (90, 160, and 10,000).

(2007), a number of trials were run with odometry estimates
fused with the MoG pose graphs from the previous results.

Odometry with two separate noise levels was used to
illustrate their effect in the context of the particle method.
The odometry noise added to the ground truth transforma-
tion was computed as follows:

σxy = vxy · d (21)

σθ = vθ ·max( .4π , a+ .00001d) (22)

odoj
i = xj � xi ⊕N ( 0, diag( σxy, σxy, σθ ) ) , (23)

where d is the ground truth distance and a is the absolute
ground truth rotation angle. In the first noise level (level 1),
vxy = 0.01, and vθ = 0.002. In the second noise level,
vxy = 0.04, and vθ = 0.004. For each noise level, one odom-
etry estimate per edge was generated and fused with the
corresponding edge using the update equations described
in Appendix C.

Figure 4 shows the performance of the Particle method
on these fused graphs, as well as the unfused graphs for

(a)

(b)

Fig. 5. Performance of the Max LM and Prefilter LM methods by
condition and different levels of fused odometry. Reported figures
are the minimum, lower quartile, median, upper quartile, and max-
imum. The marker location specifies the median, a line is drawn
between the minimum and maximum, and line ticks indicate the
quartiles. Note the logarithmic scale on the y-axis. Here SSExy is
shown in the top graph, the bottom shows SSEθ .

comparison. For the first noise level, the number of parti-
cles was set to 90. A total of 160 particles were used for
the second noise level. A lower number of particles was
needed with odometry than without since the fusion pro-
cess severely discounted modes far away from the odometry
result and thus reduced multimodality. These results are
comparable with those of Stachniss et al. (2007).

It is clear to see that the particle method does not con-
verge to a good solution without odometry information, and
in fact presents a very large variance in all computed solu-
tions. The particle method cases with fused odometry show
a much reduced variance and better results, especially in the
rotation error. This is to be expected due to the corrective
effects of odometry. Note that the recovered trajectory was
of good quality in the cases with odometry while using a rel-
atively reasonable number of particles, replicating and vali-
dating the findings of Stachniss et al. (2007). In addition, it
is clear from the data that with increasing multimodality of
the graph, the performance of the particle filter, even with
fused odometry, decreases.

Figure 5 shows the performance of the Max LM and
Prefilter LM methods on the fused graphs. One main
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(a)

(b)

Fig. 6. Performance of the Max SGD and Prefilter SGD meth-
ods by condition and different levels of fused odometry. Reported
figures are the minimum, lower quartile, median, upper quartile,
and maximum. The marker location specifies the median, a line is
drawn between the minimum and maximum, and line ticks indi-
cate the quartiles. Note the logarithmic scale on the y-axis. Here
SSExy is shown in the top graph, the bottom shows SSEθ .

observation is that with odometry, the two methods perform
virtually identically. The strong effect of the odometry esti-
mate on the MoG weights, even with very noisy odometry,
allows the Max LM method to choose the right component.
However, as odometry noise increases, the fused compo-
nent means are further away from ground truth, and both
methods converge to a worse result. Much the same can be
seen in Figure 6, showing the performance of the Max SGD
and Prefilter SGD methods. The reweighting effect of the
odometry estimates is present here as well.

Table 5 shows the times required to run the Particle
method on the fused pose graphs. The Particle method
exhibits a rather constant, but large, time requirement,
linear with the number of particles. Naturally, the lower
number of particles required in the cases with odometry
decreases the runtimes accordingly. In addition, less com-
ponents have to be sampled, depending on the fusion result.
The time required for the graph-based methods remained
the same as in the cases without odometry discussed above
as the size of the graphs did not change. Table 6 shows the
performance of the Particle, Max LM, Prefilter LM, Max

Table 5. Runtimes (means and standard deviations) in seconds for
the particle method for different levels of odometry applied to the
initial pose graph. The experiments were run on an Intel Core i7-
2720QM, 2.2 GHz, 8 GB RAM.

Condition Level 1 (90) Level 2 (160) None (10,000)

1 0.0197 0.0335 2.2399
σ0.0013 σ0.0014 σ0.0591

2 0.0195 0.0331 2.2329
σ0.0007 σ0.0013 σ0.0466

3 0.0199 0.0333 2.5432
σ0.0011 σ0.0013 σ0.4449

4 0.0199 0.0332 2.4625
σ0.0008 σ0.0011 σ0.3710

5 0.0197 0.0335 2.8486
σ0.0009 σ0.0014 σ0.4083

6 0.0202 0.0340 2.6239
σ0.0010 σ0.0017 σ0.4432

7 0.0202 0.0336 2.8482
σ0.0008 σ0.0013 σ0.3115

8 0.0195 0.0337 2.5284
σ0.0008 σ0.0015 σ0.3911

9 0.0198 0.0336 2.8559
σ0.0009 σ0.0014 σ0.3266

10 0.0198 0.0336 2.7521
σ0.0010 σ0.0017 σ0.3410

11 0.0199 0.0335 2.5556
σ0.0009 σ0.0017 σ0.3424

SGD, and Prefilter SGD methods on the graphs with odom-
etry information and, as a reference, on those without as
well. In general, the result achieved with odometry of any
level is much better.

4. Application to plane-based registration and
real-world data sets

4.1. Multimodal estimates from plane-based
registration

It is important to note that the specific method used to
generate MoG motion estimates or registration results is
separate from the general theoretical framework introduced
above. Much like in the traditional unimodal case, the
choice of sensors or of the registration method is gener-
ally irrelevant to the pose graph data structure and the
optimization method used in the SLAM system.

Since traditional registration methods usually report the
uncertainty of the single registration result as a linear Gaus-
sian, some changes are needed to generate MoG constraints.
Many possible methods come to mind. For example, there is
the option of using any iterative method such as ICP (Besl
and McKay, 1992) that may converge to different local min-
ima given different perturbed initial guesses, much like the
computation of the proposal distribution of Stachniss et al.
(2007). Also, many registration methods already generate a
list of ranked results, which can be employed in a canoni-
cal way for generating a combined MoG result. A concrete
example for the second case is presented in this section,
namely the extension of plane based registration algorithm
to generate multimodal constraints.
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Table 6. Successes by the Particle, Max LM, Prefilter LM, Max SGD, and Prefilter SGD methods (as in Table 2). Odometry information
with different noise levels (L1 and L2) was merged with the pose graphs before the methods were applied. ‘None’ means no odometry
was fused, as with the other methods summarized in Table 2. The unfused results are shown for comparison.

Particle (90/160/10,000) Max LM Prefilter LM Max SGD Prefilter SGDCondition

L1 L2 None L1 L2 None L1 L2 None L1 L2 None L1 L2 None

1 80% 80% 0% 100% 100% 40% 100% 100% 80% 100% 90% 60% 100% 90% 100%
2 100% 30% 0% 100% 100% 0% 100% 100% 0% 100% 100% 40% 100% 100% 100%
3 80% 50% 0% 100% 100% 30% 100% 100% 60% 100% 90% 0% 100% 90% 100%
4 90% 60% 0% 100% 100% 40% 100% 100% 60% 100% 80% 0% 100% 80% 100%
5 80% 50% 0% 100% 100% 20% 100% 100% 40% 100% 80% 0% 100% 80% 100%
6 60% 70% 0% 100% 100% 0% 100% 100% 50% 100% 100% 0% 100% 100% 100%
7 100% 40% 0% 100% 100% 0% 100% 100% 70% 100% 90% 0% 100% 90% 90%
8 90% 80% 0% 100% 100% 20% 100% 100% 70% 100% 100% 0% 100% 100% 100%
9 90% 30% 0% 100% 100% 20% 100% 100% 60% 90% 80% 0% 90% 90% 100%
10 90% 70% 0% 100% 100% 0% 100% 100% 70% 100% 90% 0% 100% 90% 100%
11 70% 10% 0% 100% 100% 0% 100% 100% 50% 100% 100% 0% 100% 100% 100%

The plane matching algorithm introduced in Pathak et al.
(2010c) is based on large planar surface patches extracted
from range scans. Concretely, plane matching uses an
algorithm called minimally uncertain maximal consensus
(MUMC) to determine the unknown plane correspondences
through maximizing geometric consistency by minimiz-
ing the uncertainty volume in configuration space. These
correspondences give rise to a least-squares transformation
estimate that respects the plane parameter uncertain-
ties computed during plane extraction. The method
also includes closed form expressions for the final
transformation covariances.

Plane matching is a very recent method, but it has already
been used successfully in several applications where only
very limited overlap occurs between scans (Pathak et al.,
2010b,a,d). Nevertheless, multimodal results can also be
observed here. MUMC produces a ranked list of candidate
transformations where the top-ranked result is often the cor-
rect one. As long as some parts of the data overlap, the
correct transformation usually does appear in the list, but
not necessarily as the highest ranked one.

Within the main processing loop of the plane-based reg-
istration algorithm from Pathak et al., new hypotheses are
created during each execution and appended to a list (Pathak
et al., 2010c, Algorithm 2). Instead of choosing only the
best result ω̄, the list W of all potential results is post-
processed here to deliver a small amount of good results
to incorporate in multimodal constraints. The list W con-
sists of the tuples ωi, where each tuple contains a possible
registration result and some accompanying information and
metrics. In the following, the notation ω.a is used to denote
a member a of a tuple ω. Specifically, each tuple ω in W
contains the following:

1. the translation vector �
r t;

2. the rotation quaternion �
r q̌;

3. the translation covariance �
rCtt;

4. the rotation covariance �
rCq̌q̌;

5. the uncertainty volume α;
6. the plane correspondence overlap metric op.

Note that the same notation as in Craig (2005) is used
to describe the respective coordinate frames of the plane
clouds as left (denoted l) and right (r). See also Pathak et al.
(2010c) for a more detailed description.

The overlap metric op is computed as follows:

op = #


# rP (24)

where #
 is the number of used plane correspondences,
and # rP is the number of planes in the right plane cloud
(Pathak et al., 2010c). In effect, this quantifies how much of
the complete scene described by planes was used to com-
pute the registration result. The more planes are available
for matching, the more should be used as correspondences
in a successful match. However, since we expect ambiguous
results also due to low overlap, a high threshold for op only
prevents coincidental results in very cluttered scenes. As a
side effect of the explicit inclusion of multiple registration
results, the overlap op is allowed to be significantly lower,
yielding more results that would otherwise have been dis-
carded. This allows the inclusion of locally not very likely
registration results that may be globally correct.

In some cases, these parameter settings produce up to 200
results in the list W , many of which were either very similar
to each other due to minor variations in the set of correspon-
dences used, or simply very unlikely. To reduce the number
of redundant results and to exclude very unlikely ones, this
list is processed with Algorithm 3.

Several parameters are used to quickly discard solutions
in algorithm 3:

1. Op dictates the minimum overlap allowed overall for a
solution to be considered.

2. Lunc expresses the maximum uncertainty volume α rel-
ative to the least uncertain solution in W . So, the actual
maximum uncertainty volume is αmax = Lunc · ωmin.α.

3. Omin is the minimum overlap relative to the least uncer-
tain solution in W . So the actual minimum overlap is
omin = Omin · ωmin.op.
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Algorithm 3: Post-processing of the complete list of potential solutions W .

input : A list of all consistent registrations W from Algorithm 2 of Pathak et al. (2010c)
output: The reduced list of potential solutions W∗
Initialize W∗ = ∅
Sort the elements ωi ∈W by uncertainty volume of the solution ωi.α.
Set ωmin to the first ωi ∈W where the maximum eigenvalue of ωi. �

rCq̌q̌ and ωi. �
rCtt is less than λmax.

if no such ωmin exists then
return

end
Set W∗ = {ωmin}
Set αmax = Lunc · ωmin.α.
Set omin = Omin · ωmin.op.
for ∀ωi ∈W do

if ωi.op < Op or ωi.op < omin or max eigenvalue of ωi. �
rCq̌q̌ or ωi. �

rCtt > λmax or ωi.α > αmax then
continue

end
Set jrep = −1
for ∀ω∗j ∈W∗ do

if ||ωi. �
r t− ω∗j . �

r t|| < Dmin or ωi.
�
r q̌� ω∗j . �

r q̌ < Rmin then
jrep = j
break;

end
end
if jrep == −1 then

Append W∗ ←W∗ ∪ {ωi}
end
else

This ωi may replace ω∗jrep
.

if ωi.op > ω∗jrep
.op and ωi.op < Omax and ωi.α < ω∗jrep

.α · Lrep and ||ωi. �
r t− ω∗j . �

r t|| < Dmax and

ωi.
�
r q̌� ω∗j . �

r q̌ < Rmax then
Replace ω∗jrep

with ωi

end
end

end

4. Dmin is the minimum Euclidean distance between
accepted solutions.

5. Rmin is the minimum angular distance between accepted
solutions, which is computed as the absolute angle value
of the rotation between two solutions in the axis-angle
notation (� in the algorithm).

6. λmax is the maximum covariance eigenvalue allowed.

In addition, some parameters are needed to determine
that a slightly less likely solution (based on the uncer-
tainty volume) may replace another more likely one. This
is needed if a very likely solution, that only has very few
correspondences, is close to but not as accurate as a slightly
less likely solution that used many more correspondences:

1. Lrep expresses the maximum relative uncertainty vol-
ume the replacement is allowed to have.

2. Omax is the maximum overlap that allows a potential
solution to be considered to be replaced.

3. Dmax is the maximum Euclidean distance to the replace-
ment candidate.

4. Rmax is the maximum angular distance to the replace-
ment candidate.

Each result left in W∗ after post-processing is used as a
component in the final MoG for a constraint in the graph.
Several ways to compute a good mixture weight for each
solution were tried, however the specific method did not
seem to make a difference in practice. In the experiments
below, the weights are close to uniform, but their order-
ing keep the original ordering as returned by the processing
algorithm above.

4.2. Bremen city center

The first experiment with real-world data is based on 13
scans that were recorded with a Riegl VZ-400 in the center
of Bremen, Germany. Each point cloud consists of between
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Fig. 7. Above: Scans 1 (right) and 2 (left) of the Bremen City data set. Below: The effects of ambiguity due to occlusion on plane-
registration of the scan pair. The left image shows the most likely result as reported by the plane registration method. The second most
likely registration result, shown on the right, is the globally correct but less certain one (see the covariance determinants in the first row
of Table 8). Detail views of where the scans meet at the church tower are shown in the right column. Note that no odometry exists to
disambiguate the results.

Table 7. Plane matching parameters used for the Bremen City
data set.

Op 0.1 λmax 800000
Lunc e15 Lrep e3

Omin 0.667 Omax 0.24
Dmin 5 Dmax 0.2
Rmin 0.065 Rmax 0.005

15 and 20 million points with reflectance information. The
scanner was mounted on a tripod without a mobile base,
thus no odometry information is available. However, mark-
ers were placed in the environment beforehand to allow for
a comparison with the ‘gold standard’ for geodetic appli-
cations, i.e. registration with artificial markers in the Riegl
software which requires additional manual assistance in
the process such as confirming or re-selecting correspon-
dences. This registration based on artificial markers can also
be used to seed methods that need a good initial guess, e.g.
for ICP-based methods such as 6D-SLAM (Borrmann et al.,
2008). Note that no initial guess, i.e. no initial marker-based
registration, no motion estimates, no GPS, or anything sim-
ilar is used in the results presented here, other than as a
comparison.

Translations between the different scanning locations
were quite large, up to 50 m. As mentioned, 6D-SLAM
requires the marker based Riegl registration as an initial
guess to successfully run on this data set. Plane registra-
tion, in contrast, performs very well already without any
initial motion estimates (Pathak et al., 2010d). On most
pairs, the plane registration results are very close to the
marker-based registration, and even appear to be more pre-
cise under close visual inspection of the point cloud data.
But the method also fails on several scan pairs. It can be
noted that these pairs tend to have very large occlusions and
very low overlap, and hence display quite some ambiguities
in terms of possible plane correspondences. Furthermore,
it can be noted that the correct solutions for these pairs are
among the top candidates in the MUMC ranking.

One example where occlusion results in diminished over-
lap and thus to ambiguous registration results is shown in
Figure 7. The plane matching parameters used are shown in
Table 7. The prefilter step again used N = 200 samples in
the filtering process, as in the synthetic case above.

Using the multimodal plane registration method as
described in Section 4.1, the 13 scans and the registrations
between them gave rise to a graph with a total of 13 vertices
and 23 edges, of which 7 are multimodal. This MoG pose
graph has a complexity C( G)= 7.58496. Table 8 gives an
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Table 8. The multimodal edges in the Bremen City map. The left column shows the edge in question, the other columns show the list of
modes in the order reported by the plane-based registration. Each mode is shown in form of the estimated translation T(·) and rotation
R(·) as well as the determinant of the covariance det( C) associated with it. Furthermore, each globally correct mode is highlighted in
gray.

Pair #1 #2 #3

1→ 2 T = ( 8.22,−4.88, 0.45) T = (−1.67, 41.22,−0.26) –
R = ( 2.03, 0.69,−68.12) R = ( 2.30,−0.02,−157.07)
det( C)= 2.38×−23 det( C)= 6.97×−19

5→ 6 T = (−22.21, 0.14, 0.27) T = (−22.14, 0.24, 6.67) –
R = ( 0.78, 0.77, 72.69) R = ( 0.64, 0.76, 72.69)
det( C)= 4.94×−26 det( C)= 2.08×−23

6→ 7 T = (−21.30, 5.89, 0.19) T = ( 0.85, 4.52,−0.08) –
R = (−1.41, 1.10,−132.24) R = (−2.31, 0.58,−42.07)
det( C)= 7.03×−22 det( C)= 6.70×−16

1→ 12 T = (−47.18,−48.63,−1.49) T = ( 3.13, 2.22, 0.10) –
R =, (−1.11,−0.13, 139.99) R = (0.14,−0.80, 50.63)
det( C)= 2.26×−21 det( C)= 6.92×−20

8→ 10 T = ( 40.83, 15.20,−1.25) T = ( 1.15, 16.00, 0.04) T = (−8.52, 12.75, 0.21)
R = ( 1.54,−3.78,−176.13) R = ( 0.06,−1.22,−113.78) R = ( 2.14,−1.13, 10.13)
det( C)= 6.89×−16 det( C)= 2.33×−13 det( C)= 1.05×−12

9→ 11 T = (−20.42, 49.43,−1.27) T = ( 7.73, 32.00,−0.44) –
R = ( 1.47, 0.90, 28.85) R = ( 2.34, 0.78, 124.47)
det( C)= 1.54×−11 det( C)= 1.14×−8

9→ 12 T = ( 2.64, 3.50,−0.08) T = (−41.38, 61.60,−1.75) –
R = (−0.49,−1.19,−53.71) R = (−0.87,−0.87,−50.20)
det( C)= 5.83×−19 det( C)= 2.86×−13

overview over the seven multimodal edges, especially their
modes in terms of the estimated transformations in the form
of translations T and rotations R as well as the determi-
nant of the covariances det( C) associated with them. The
smaller the determinant, the more certain the candidate reg-
istration result. Using the settings described in Table 7, at
most three modes per edge were encountered. For each pair
shown in Table 8, the correct mode is indicated by gray
shading. Note that four times the optimum is correct while
three times the second best choice is the proper solution.
Also, higher-ranked components than the globally correct
ones are all supposedly more certain, showing the need to
take less certain registration results into account to achieve
global convergence. Furthermore, note that the modes tend
to be quite far apart, i.e. there tend to be significantly dif-
ferent spatial transformations associated with them. This is
only partially an effect of the post-processing applied to
the MUMC results as it allows a minimum distance of 5 m
between components (see Table 7), while distances between
the reported components are much larger. Choosing the
wrong mode has hence strong impacts on SLAM, which
cannot be easily repaired with additional loop closures.

Figures 8 and 9 show the final maps after optimization
using both the traditional unimodal Max SGD method and
the Prefilter SGD/LM methods. The results from Prefilter
LM and Prefilter SGD are virtually indistinguishable with
almost the same residual error (see Table 9). The planar rep-
resentation along with the pose graph structure is shown in
Figure 8. Figure 9 shows a high-quality point cloud ren-
dering using the mapped reflectance value as color. It is
quite obvious that the traditional Max SGD/LM methods

Fig. 8. Final maps in plane patch representation after optimiza-
tion with the traditional unimodal Max SGD method (top) and the
multimodal Prefilter LM (bottom). The planes used for matching
as well as the graph structure is shown. The log probability of the
traditional result is −1.26933 × 109, while the log probability of
the multimodal result is −1.01384× 105.

fail while Prefilter SGD as well as Prefilter LM are able to
find good map estimates.
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Table 9. Runtimes in seconds and result quality for the traditional Max SGD/LM, Multi-Edge LM, and Prefilter SGD/LM on the
Bremen City data set. Recorded on a Core i7-2720QM, 2.2 GHz with 8 GB of RAM. The SSE metric (see Appendix B) was computed
relative to the de-facto ground truth transformations given by the marker based registration. Max SGD/LM were initialized with a
breath-first traversal of the graph, the rest of the methods were initialized with the Prefilter method described in Section 2.2.2.

Method Initialization Optimization Log probability SSExyz SSEρθφ

Max SGD 0.000226 0.006497 −1.26001× 109 3.65999× 109 7.92405× 10−1

Max LM 0.000231 0.001963 −3.56238× 109 6.63873× 109 1.11384× 100

Multi-edge LM 0.000276 0.022238 −1.45329× 1010 2.65199× 109 1.61360× 100

Prefilter SGD 0.000279 0.006288 −1.30253× 105 1.02629× 105 3.19938× 10−5

Prefilter LM 0.000269 0.003624 −1.01384× 105 1.02628× 105 3.30090× 10−5

Fig. 9. Mapping results in point cloud representation using the
traditional unimodal Max SGD method (top), and the multimodal
Prefilter LM method (bottom). Laser reflectance values are used
for assigning grayscale values (coded with the Jet colormap in
color). See also Extension 1 for an animated view of these maps.

Two comparisons to ground truth are made, once using
the marker-based registration, and once by superimposing
the map on aerial imagery from Google Earth. Table 9
shows runtimes as well as the quality of the results based
on final log probability and an error metric relative to the
marker-based transformations. Figure 10 shows the final
multimodal map computed by Prefilter LM in relation to
the Google Earth imagery.

The values in Table 9 clearly show that for negligible
computational overhead, Prefilter LM and Prefilter SGD
arrive at significantly better solutions. Not only is the result-
ing map more than four orders of magnitude more likely

given the edge constraints (here, the full log joint probabil-
ity is used for both methods), but the result is also much
closer to the de-facto ground truth given by the marker-
based registration. In addition, it aligns well with the aerial
imagery. Note that the units are in millimeters, so an SSExy

value of 102,628 for both prefilter SGD and prefilter LM is
very small (around 30 cm mean square error per position).
The SSExy achieved by max SGD of 3.58956 × 109 on the
other hand is still very big, around 60 m.

The Particle method was also applied to this data set.
Table 10 shows the performance given different particle
counts over 100 trials. The resulting log probability stabi-
lizes with more than 800 particles, and many more would be
needed to achieve a better result. While the performance is
not bad, much better in fact than the standard Max SGD/LM
methods, a comparable result to Prefilter SGD/LM cannot
be achieved. In addition, the required computation time is
an order of magnitude larger.

4.3. Hannover Fair Hall

In a second experiment with real-world data, a set of 22
scans was recorded in Hall 22 at Hannover Fair exhibi-
tion grounds during evening hours with a nodding 2D Sick
S300 laser scanner actuated with a cheap and rather inac-
curate servo. The set was recorded during the RoboCup
German Open 2009 competition, and many screens, booths,
and competition fields are visible in the data. People were
occasionally moving through the scans, introducing addi-
tional noise; due to the rather slow motion of the scanner,
they appear as blurry blobs.A further challenging aspect of
this data set is that rather large translations and rotations
occurred between scans, and thus the overlap between scans
is often very small. The average translation between two
scans is around 5 m, with a maximum sensor range of 30
m. Note that odometry of the mobile robot base is in theory
available, however, it is very imprecise as the robot uses
tracked locomotion over a mixture of carpets and slippery
floors.

The plane matching parameters used are shown in
Table 11. As above, the prefilter step used N = 200 samples
in the filtering process.
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Fig. 10. Final map after optimization with Prefilter LM overlaid on aerial imagery of Bremen city center from Google Earth. Note that
due to the height of the buildings, some parallax exists in the aerial image, and some ground features (fountains, small trees), as well
as some high structures (cathedral tower) do not match exactly. The image shows the down-projected map at the general roof level. The
height is used to assign grayscale values (coded with the Jet colormap in color).

Table 10. Runtimes in seconds and result quality for different numbers of particles of the Particle method on the Bremen City data set.
Owing to the non-deterministic nature of the Particle method, 100 trials were run for each particle count and summarized by the mean
and standard deviation. The data was recorded on a Core i7-2720GM, 2.2 GHz with 8 GB of RAM. The SSE metric (see Appendix B)
was computed relative to the de-facto ground truth transformations given by the marker-based registration.

Number of Time Log probability SSExyz SSEρθφ
Particles

25 0.001554 −1.28219× 108 2.850298× 108 0.024349
σ2.05189× 10−4 σ6.140699× 108 σ9.643072× 108 σ0.157559

50 0.002379 −1.43149× 106 9.127352× 106 5.061603× 10−5

σ1.57122× 10−4 σ1.117032× 107 σ7.872734× 107 σ6.387661× 10−5

100 0.004469 −2.98506× 105 5.3707584× 105 4.427961× 10−5

σ2.72404× 10−4 σ2.333723× 104 σ1.314959× 106 σ8.960579× 10−7

200 0.008602 −2.90968× 105 2.8931014× 105 4.442851× 10−5

σ4.38217× 10−4 σ1.073785× 104 σ5.761819× 105 σ6.917717× 10−7

400 0.016455 −2.86378× 105 2.2318785× 105 4.439304× 10−5

σ4.87811× 10−4 σ4.710047× 103 σ5.652077× 104 σ6.021706× 10−7

800 0.032582 −2.84246× 105 2.2788351× 105 4.436361× 10−5

σ8.26252× 10−4 σ4.490705× 103 σ5.825175× 104 σ6.852595× 10−7
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Fig. 11. Hannover Fair map. Top: Traditional Max SGD method using only the locally most likely registration result. Bottom: Result
of the Prefilter LM method. The local z coordinate was used to assign grayscale values (coded with the Jet colormap in color). See also
Extension 1 for an animated view of these maps.

Table 11. Plane matching parameters used for the Hannover Fair
data set.

Op 0.1 λmax 800,000
Lunc 1022 Lrep 103

Omin 0.667 Omax 0.24
Dmin 2 Dmax 0.5
Rmin 0.065 Rmax 0.035

The final map consists of 23 vertices and 53 edges.
Tables 14 and 15 show all 21 edges containing multimodal
constraints. At most five modes were detected per edge,
and in the worst case, the correct mode is actually the fifth
one. The resulting MoG pose graph complexity is C( G)=
30.4167.

Note that in relation to the modes encountered in the
Bremen City data set (Table 8), these modes are spatially
closer to each other. This is due to a much more cluttered
scene with many parallel planes (e.g. partitions, screens)
and noise (e.g. by moving people and jitter in the servo con-
trol) which generate ambiguities that tend to have a negative
impact on the registration method. Despite the relative spa-
tial closeness, the wrong optima of the plane registration are
so far away from the proper solution that the standard Max
SGD and Max LM methods fail (see Figure 11).

Table 12 shows the achieved results of the Particle
method with different numbers of particles. Since the graph
was rather small, and the method is stochastic, 100 trials
were run to produce these numbers. Naturally, the com-
putation time increases linearly with the amount of parti-
cles used. Also, the log probability of the final MoG pose
graph configuration increases when more particles are used.

Around 1,600 particles are needed to find a good result
reliably. At first glance, this may seem less than for the syn-
thetic graphs discussed above, but note the large difference
in graph size. Still, Prefilter SGD and Prefilter LM converge
to a better result than the Particle method, and they do this
at least one order of magnitude faster.

Table 13 shows the runtime and map quality comparisons
between the traditional Max SGD/LM methods, the Multi-
Edge LM method, and the Prefilter SGD/LM methods. The
five methods do not differ significantly in their runtime,
but produce very different results. The Prefilter SGD/LM
methods arrive at a map that is almost four orders of mag-
nitudes more likely given the log joint probability than the
traditional methods.

Figure 11 show the two resulting maps. Quite obviously,
the traditional Max SGD method failed, resulting in vastly
misplaced observation poses and visibly inaccurate map
parts. The same holds for the Max LM method which also
produces obviously distorted maps. Both the Prefilter SGD
and Prefilter LM methods, however, converge to nearly the
same very good final result, even though the joint proba-
bility of the results is quite low. This may be explained by
the many multimodal constraints that actually assign a low
weight to the correct mode. Still, it seems that the informa-
tion from other constraints reduces the likelihood of other
optima sufficiently. This data set also illustrates that the
modes do not have to be significantly far apart from each
other for the Prefilter step to work.

5. Conclusion

In this article, a way to represent local ambiguities in pose
graph SLAM has been introduced. Concretely, MoG are
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Table 12. Runtimes in seconds and the final log probability
achieved by the Particle method using different particle counts
(labeled # above) on the Hannover Fair data set. Due to the non-
determinism of the Particle method, 100 trials were run per count.
The data was recorded on a Core i7-2720QM 2.2GHz with 8GB
of RAM.

Number of Time Log probability
particles

100 0.010071 −5.285083× 108

σ2.831905× 10−4 σ8.736545× 108

200 0.019808 −1.923713× 108

σ3.68352× 10−4 σ5.632018× 108

400 0.037288 −1.060568× 107

σ6.222948× 10−4 σ1.027818× 107

800 0.072761 −5.349669× 106

σ1.710345× 10−3 σ4.192651× 107

1600 0.147081 −3.769561× 106

σ6.048332× 10−3 σ1.698311× 106

3200 0.295176 −3.353374× 106

σ1.216805× 10−2 σ1.632804× 106

6400 0.579942 −3.269732× 106

σ2.648059× 10−2 σ6.91194× 104

12800 1.213969 −3.244765× 106

σ7.467676× 10−2 σ4.488209× 104

Table 13. Runtimes in seconds and results for the traditional Max
SGD/LM, Multi-Edge LM, and Prefilter SGD/LM, recorded on a
Core i7-2720QM, 2.2 GHz with 8 GB of RAM. Hannover Fair data
set. Max SGD/LM were initialized with a breadth-first traversal of
the graph, the rest of the methods were initialized with the poses
computed by the Prefilter method described in Section 2.2.2.

Method Initialization Optimization Final log
probability

Max SGD 0.000457 0.014856 −2.54952× 109

Max LM 0.000462 0.048428 −1.20496× 108

Multi-edge LM 0.000312 0.059520 −2.33928× 1010

Prefilter SGD 0.000353 0.015385 −2.36122× 106

Prefilter LM 0.000304 0.064116 −7.76502× 105

used here for this purpose. This representation allows for
much more complex constraint probability density func-
tions, yet is easy to handle analytically and numerically.
Such complex constraint functions occur, for example, if
ambiguities in the environment give rise to multiple possi-
ble registration results. In addition, MoG can also be used
to model nonlinear uncertainty models, e.g. from odometry,
more accurately.

Furthermore, it is shown with experimental data that in
the case of ambiguous registration results, state-of-the-art
methods in the form of particle filters and graph based
methods do not work well. In theory, particle filters can
handle arbitrary probability distributions, including MoG,
in the registration results. However, even with relatively

few ambiguities and an extremely large number of parti-
cles, namely 10,000, the performance in terms of accu-
racy and consistency is very limited. This is shown with
experiments on synthetic data where the degree of mul-
timodality can easily be controlled. Existing graph-based
methods cannot handle multimodal registrations without
modifications. More precisely, they correspond to the case
of using only the component of each mixture with the
largest weight. When using this strategy for optimization
on a MoG pose graph, the experimental results show that
the performance in terms of accuracy is also very lim-
ited. Further experiments with real data sets show the same
effect.

A naïve solution is to enumerate all component combi-
nations to generate all possible variations of unimodal pose
graphs based on a MoG pose graph. Each candidate graph
can then be optimized with a standard method and the best
optimization result among all candidates is used as the final
result. This exhaustive search will most likely find a very
good solution, as also confirmed in the experiments, but
it also takes a very long time to complete as it involves
a combinatorial explosion. In some examples presented
above, optimization with this approach would take almost
10 years.

However, a promising method for MoG pose graph
SLAM has also been introduced in this article. The Pre-
filter method was introduced, which converts the MoG pose
graph into a unimodal one and subsequently uses a state-
of-the-art pose graph optimization method, such as LM or
SGD. The Prefilter method incrementally follows minimum
spanning tree edges and assigns multiple global poses to
each vertex to find a good global combination of modes.
The edge cost used in the minimum spanning tree is the
number of modes of its constraint, thus minimizing ambi-
guity during traversal. This greedy heuristic is shown to be
very fast and robust in the presented experiments, especially
compared with the standard methods.
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Appendix A: The algorithm to generate the
synthetic MoG pose graphs

The random MoG pose graphs used in Section 3.1 for a sys-
tematic evaluation of the different methods are generated
with algorithm 4. In the experiments, multimodal registra-
tion results are assumed to be an exception, i.e. most edges
contain a standard Gaussian and only a few contain a mix-
ture. In addition, the number of modes is assumed to be
small. Note that the exact number of multimodal edges with
their exact number of modes is provided as input to the
algorithm, thus the amount of multimodality can be exactly
controlled.

Algorithm 4 simply ensures that there is a proper mode
per edge, i.e. that there is one in principle correct (but noisy)
registration, by checking that the related spatial transfor-
mation does not pass through a wall such that there is a
line of sight between the two related vertices. The Gaussian
noise for the proper first constraint per edge is initialized
with covariance � = diag( 1+ 0.05|x|, 1+ 0.05|y|, 0.01 +
0.01|θ |). So, in Algorithm 4 σxy = 0.05 and σθ = 0.01,
as well as δxy = 1.0 and δθ = 0.01. Here, x, y, and θ

denote the relative ground truth pose of the target vertex
relative to the base vertex of the constraint. If an additional
constraint is added, a random weight between 0.01 and 1
is generated; this is followed by a renormalization of all
weights.

Furthermore, the algorithm ensures that the edges have
a reasonable length, i.e. that no registrations are assumed
between far away places. All 110 synthetic graphs are sam-
pled from the environment shown in Figure 2. This envi-
ronment spans an area of 1,300 by 900 units. Each edge is
approximately 100 units long on average. Each graph con-
sists of 128 vertices and 256 edges. Any edge is between 75
and 230 units long by design.
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Algorithm 4: Algorithm to generate the multimodal
graphs.

Input: Minimum and maximum vertex distances d− and d+
Input: Number of vertices and edges NV and NE

Input: For each number of components m = 2 . . . M , the number of
desired edges containing this number of components Nm

Input: Translation variance factor σxy and rotation variance factor σθ

Input: Translation variance offset δxy and rotation variance offset δθ

Output: MoG Pose Graph G
ex =( 1, 0, 0)
ey =( 0, 1, 0)
eθ =( 0, 0, 1)
while |V | < NV do

Sample a pose in free space x with random orientation
if ∃vi ∈ V : the distance from x to xi is between d− and d+ and
the line between them does not intersect an obstacle then

tgt = x� xi

� = diag( δxy+σxy||tT
gtex||, δxy+σxy||tT

gtey||, δθ+σθ ||tT
gteθ ||)

μ = tgt ⊕ ε N ( 0, �)

vnew =( x, )̇
V = V ∪ vnew

E = E ∪ ( vi, vnew, ( {1}, {μ}, {�}) )
end

end
while |E| < NE do

Select random vertex vi ∈ V
for all vertices vj not connected to vi do

if the distance from xi to xj is between d− and d+ or there
is no line of sight between the two then

continue
end
tgt = xj � xi

� = diag( δxy+σxy||tT
gtex||, δxy+σxy||tT

gtey||, δθ+σθ ||tT
gteθ ||)

μ = tgt ⊕ ε N ( 0, �)
E = E ∪ ( vi, vj, ( {1}, {μ}, {�}) )

end
end
for ∀m = 2 . . . M do

for ∀n = 1 . . . Nm do
Select random edge ei ∈ E which has only one component
( va, vb, c)= ei

( π , μ, �)= c
while |c| < m do

Sample a pose in free space x with random orientation
if distance from xa to x is not between d− and d+ or
there is no line of sight between them then

continue
end
μ = x� xa

� = diag( σxy||μTex||, σxy||μTey||, σθ ||μTeθ ||)
c = c

end
end

end

Note that all ‘ground truth’ modes, i.e. those which repre-
sent an in principle correct but just noisy spatial transforma-
tion, are generated in the same way as all other components
in the mixtures. This reflects the idea of local ambiguity:
any of the components in a mixture are potential registration
results.

Appendix B: A quality metric for experimental
map evaluation

Olson (2008) describes a map error metric SSE where the
mean squared error between ground truth and the estimated
vertex poses is computed, once for translation (SSExy) and
once for rotation (SSEθ ).

tgt
i = xi � gti (25)

SSExy = |V |−1
∑
vi∈V

( eT
1 tgt

i )2+( eT
2 tgt

i )2 (26)

SSEθ = |V |−1
∑
vi∈V

( eT
3 tgt

i )2 (27)

where gti is the ground truth pose of vertex i, xi is its
estimate, and en ∈ R

3 is a canonical unit vector in the
nth dimension (i.e. e1 = ( 1, 0, 0)T). This metric strongly
emphasizes the absolute difference to ground truth poses
and thus punishes global errors severely. Other error met-
rics, such as those introduced by Burgard et al. (2009),
rather focus on local errors between two vertices in the
graph and are more lenient. Any method that does well in
the SSE metric can be expected to also receive high scores
in the other less stringent metrics. Hence, SSE is used here.

Appendix C: Fusing mixtures of Gaussians for
odometry

In order to study the effects of odometry in Section 3.1, a
method to fuse a MoG (the possibly ambiguous registration
result), with a single Gaussian estimate (the odometry esti-
mate) is needed. This is done using the measurement update
equations of the Gaussian sum filter (Anderson and Moore,
1979, p. 214). As usual, the mean and covariance of a single
component m are updated as follows:

μm = μ̄m + Km( μodo − μ̄m) , (28)

�m = �̄m − Km�̄m, (29)

Km = �̄m( �̄m +�odo)−1 . (30)

This is done for each component. Finally, the fused weights
are

πm ∝ π̄mp( μ̄m|μodo, �̄m +�odo) , (31)

where μ̄m, �̄m, and π̄m are the component parameters before
fusion.

The weight update has the result that components that are
far away from the odometry estimate are weighted signifi-
cantly less. In the results described in Section 3.2, a compo-
nent is dropped from the fused mixture if its weight drops
below 0.005 after normalization. After one or more compo-
nents have been dropped from the mixture, the remaining
weights are normalized again. The approximation error can
be made arbitrarily small by selecting a lower threshold.
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Appendix D: Index to multimedia extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video 3D animation of the distribution in Figure 1
and the final maps generated by max SGD
and prefilter LM of the real-world data sets
as discussed in Section 4.2 and 4.3. See also
Figures 9 and 11.
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