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Abstract— This paper is about long-term navigation in envi-

ronments whose appearance changes over time - suddenly or

gradually. We describe, implement and validate an approach

which allows us to incrementally learn a model whose com-

plexity varies naturally in accordance with variation of scene

appearance. It allows us to leverage the state of the art in

pose estimation to build over many runs, a world model of

sufficient richness to allow simple localisation despite a large

variation in conditions. As our robot repeatedly traverses its

workspace, it accumulates distinct visual experiences that in

concert, implicitly represent the scene variation - each experi-

ence captures a visual mode. When operating in a previously

visited area, we continually try to localise in these previous

experiences while simultaneously running an independent vision

based pose estimation system. Failure to localise in a sufficient

number of prior experiences indicates an insufficient model

of the workspace and instigates the laying down of the live

image sequence as a new distinct experience. In this way, over

time we can capture the typical time varying appearance of an

environment and the number of experiences required tends to

a constant. Although we focus on vision as a primary sensor

throughout, the ideas we present here are equally applicable

to other sensor modalities. We demonstrate our approach

working on a road vehicle operating over a three month period

at different times of day, in different weather and lighting

conditions. In all, we process over 136,000 frames captured

from 37km of driving.

I. INTRODUCTION

To achieve long term autonomy robotic systems must be
able to function in changing environments - we see this as a
big challenge. Change can come from many sources: sudden
structural change, lighting conditions, time of day, weather
and seasonal change. To illustrate, consider the problem of
ego-motion estimation with a camera mounted on a robot
operating outdoors. This is a richly mined area of research
and immediately we reach for a visual navigation (SLAM)
system that can map and localise all at once. But what
should we do if we revisit a place and its appearance has
changed drastically - perhaps it has snowed? What do we
do if a place’s appearance slowly creeps as summer turns
to autumn? Should we undertake some unifying data fusion
activity to yield a monolithic map in which we can localise?
We argue that we should not; in the limit such a map would
have to contain features from every possible scene modality.
The things we see on a given tree in winter are simply
not the things we see in summer; the details we see on
a wet road at high noon are different to those we see at
dawn when the road is dry. We shall not force things to be
coherent. If, for example, part of a workspace on Tuesday
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Fig. 1. The same place can look very different, depending on when it is
observed. This variation may come from structural change, lighting condi-
tions or through shifting seasons. Attempting to produce a single trajectory
from multiple experiences may be difficult due to lack of correspondences.

looks wildly different on Wednesday then we shall treat
these as two independent experiences which equally capture
the essence of the workspace. We shall only ever tie them
together topologically.

This paper will lay out exactly how we accumulate,
manage and exploit visual experiences to maintain seamless
navigation. But to begin with a high level view of our
approach is appropriate. On the initial visit to a new area we
save a constellation of visual features like most systems. For
reasons that will become clear we call this an “experience”
rather than a map. When revisiting the area the robot attempts
to use the live stream of images to localise in the saved
experience. If at any point this is unsuccessful, a new
experience is created based on the current appearance of
the world. As the robot continues, still saving to this new
experience, it is also trying to re-localise in its previous
experience(s). If this is successful at any point, saving is
stopped and the system returns to localising in its previous
experience. This is shown graphically in Fig. 2. Importantly
this methodology causes the system to “remember” more
representations for regions that change often, and fewer for
regions that are more staid. We call the collection of all
experiences the plastic map. Note that we handle new routes
and complete localisation failures seamlessly - indeed it
is the failure of localisation which drives the saving of a
new experience. This is because we make the assumption
that our localisation fails because of bad or unsolvable data
association - what was there before is simply not there now.

A core competency on which we depend is a visual odom-
etry (VO) system which continuously produces a (possibly
ephemeral) 3D model of the world using a stereo pair. This
system is always on, always consuming the live stereo pair
stream and estimating the relative transformations between
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Fig. 2. An overview of our approach (best viewed in colour). A visual
odometry (VO) system continuously consumes the live image stream. In
parallel a series of localisers attempt to localise each live frame in their
own experience. In epochs A and C both localisers successfully localise
the frames in their experiences, so the VO output is forgotten. In epoch
B, localisation is only successful in one saved experience (experience 2),
which is deemed too few, so the VO output is saved in a new experience.

camera poses and producing 3D feature locations relative
to camera poses. Concretely an experience is a stored set
of relative poses and feature locations. Note that we use a
relative framework, as in Sibley and Mei [1], which allows
us to entirely avoid operating in a single global frame. All
we require is an ability to render a metrically correct idea
of camera motion and 3D feature locations in the vicinity of
the robot’s current pose - we do not care about the location
of things that are far away and which we cannot see. Upon
revisiting an area, localisation is attempted in all previous
experiences that are relevant to the area.

By keeping experiences independent we are able to run a
“localiser” for each. This can trivially be done in parallel and
allows the system to utilise relevant experiences. In reality,
at runtime we see that the number of active and successfully
localised experiences is small. After all, each new experience
is only created out of necessity because it is visually different
from all others. Therefore subsequent visits to an area should
be able to localise in only a small number of experiences as
they are by construction visually different. Finally we would
like to stress that although we describe the framework using
vision, it is actually agnostic to the sensing modality and
could be used with other sensors such as laser range finders
so long as equivalent systems to the ones described above
are supplied.

We have tested our system on 53 runs of two laps of a
0.7km circuit, covering 37km in total and consisting of over
136,000 stereo frames. The data were collected over a three
month period at many different times of day and in different
weather conditions.

The remainder of the paper is organised as follows. Section
II looks at related work. Section III presents the main idea in
this paper and Section IV briefly outlines the implementation
details. Section V presents the results.

II. RELATED WORK

As localisation and mapping algorithms mature, the prob-
lem of truly long term navigation is becoming more urgent. A

common problem in robotic navigation is changing environ-
ments and is a major obstacle to realising lifelong autonomy.
Traditional mapping approaches often create their map once
on the initial visit and hope that this will be sufficiently close
in appearance to be useful on subsequent visits. Recently
there have been some attempts to combat these problems.

Konolige and Bowman [2] develop their view-based maps
system [3] to adapt to change in an indoor environment.
The system creates a skeleton graph of keyframes from a
VO system. The views stored at nodes are then updated
and deleted based on a scheme designed to preserve view
diversity while limiting the maximum number of views.
Their skeleton map is in a single frame of reference and is
incrementally optimised via Toro [4]. They show results for
an office that includes moving people, furniture and changing
lighting conditions. Milford and Wyeth’s RatSLAM system
[5] uses the notion of an “experience map” which stores
a collection of experiences. Their experiences, unlike ours,
are point places in the world, containing a pose estimate
and a view of the scene, as well as metric transforms
(from odometry readings) to other experiences. Over time the
experience map is relaxed to minimise the difference between
the absolute experience locations and their transitions to
others. A new experience is created when the robot visits a
new place or the world changes visually, experiences are also
deleted to keep the density down. Note that an experience
in our framework is not the same as theirs, ours is a chain
of images and poses which can cover a large spatial area.
Also experience creation is driven by localisation failure, not
directly by visual changes. Biber and Duckett [6] sample
laser maps at a series of time scales to create a single
map that has both long term and short term structure. This
allows them to model both short term dynamic objects as
well as long term structural change. They show improved
localisation accuracy over the period of weeks for a busy
lab environment. We also note the work of Furgale and
Barfoot [7] who develop a teach and repeat system using
vision in an outdoor environment. During the teach phase the
robot creates a series of submaps using VO. A localisation
module is then used to retrace the original path. They show
results over several kilometres, however they do not attempt
to capture changing appearance from the original traverse.

In contrast to these previous approaches we only store
new experiences when our current ones are insufficient. This
results in each stored experience representing a different
visual mode so we do not need to worry about deletion.
As we allow each experience to exist in its own frame of
reference, localisation is trivially parallelised and allows the
use of multiple experiences at any time. This also allows
significantly different visual modes to represent the same
physical space.

III. PLASTIC MAPS

The contribution of this paper is the development and
demonstration of a framework for long-term navigation in a
changing environment. With our proposed methodology, the
robot constantly produces a 3D model of the environment
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Fig. 3. An example of the output from our visual odometry system. Each
frame is represented by a node, n

k

. Nodes are linked by the transformation
that describes the camera motion between F

k�1 and F
k

as a 6 DoF vector
t
k

. Each node also has a set of visible landmarks which can be transformed
so they are relative to k via eq. (2).

from a VO system that takes the live image stream as its
input. At the same time the robot opportunistically attempts
to localise in saved experiences. If localisation is successful
in a previous experience, we believe our representation of the
current place to be sufficient. However if we cannot localise
in previous experiences, we create a new one by saving the
output of the VO system. We denote experiences by E and
refer to the jth experience as jE . The set of all experiences
creates the plastic map.

PM = {jE} 8j (1)

Our method relies on the ability to navigate locally and
being able to “close the loop” - recognising when we have
returned to a previously visited place. Both of these are
proven competencies. Metric trajectory estimation systems
using laser [8] and vision [9], [10] have been demonstrated
while large scale topological loop-closure systems using
vision have been achieved [11] and crude GPS with a <10m
error is often available in outdoor environments. In this paper
we present our method using images, but it could be applied
to other sensor types if equivalent competencies are provided.
We now outline the requirements of the local navigation
system before explaining how this is used to create the plastic
map.

A. Experiences

Our VO system operates on a sequence of stereo frames
Fk = {F0, . . . ,Fk

}. At time k a stereo frame is processed
and a camera node n

k

is linked to node n
k�1 by a 6 degree of

freedom transform t

k

= [x, y, z, ✓
r

, ✓

p

, ✓

q

]T where ✓
r

, ✓
p

and
✓

q

are roll, pitch and yaw respectively. If new 3D landmarks
are initialised as F

k

is processed then these are also attached
to n

k

. We denote the ith such landmark attached to n

k

, where

i is a global index1, as l

i,k

= [x, y, z]T - a vector in the
camera frame at time k. Finally, n

k

also contains a list of all
landmarks observed in F

k

, many of which will be attached
to other nodes - the ones in which they were initialised.

Often we wish to express a landmark described in frame
p in a different frame q. This operation of transforming l⇤,p
to l⇤,q is represented by p⇧

q

such that

l⇤,q  p⇧
q

(l⇤,p) (2)

The VO system runs continuously on the live frame stream.
When this needs to be saved (see Section III-C) a new
experience jE is created and the output from the VO system
is stored in this experience. jE then, is simply a chain of
camera nodes, the inter-node transforms and associated 3D
features. We refer to nodes in experiences as jE

m

. Later we
will explain how these chains are related (topologically) to
form in concert a plastic map. Fig. 3 illustrates the output of
the VO, which may be saved as an experience.

B. Localisation

We now introduce the idea of a localiser. Each localiser
runs over a saved experience, given a live frame F

k

, its task
is to calculate the transformation from the frame to a node
in the experience. It operates in a very similar way to the
live VO system except the proposed landmark set comes
from the saved experience, not the previous frame F

k�1. The
landmarks are taken from the local region surrounding the
previous position in the experience. Additionally the localiser
does not attempt to add or update landmarks in either the
current VO output or the saved experience. It is completely
passive in terms of its impact on both.

An important competency of the localiser is its ability to
tell if it is “lost”. This happens when the incoming frame
can no longer be localised in the previous experience. There
are may ways this can be calculated. Possibilities include the
number of landmarks found and/or classified as inliers, and
comparisons with the current VO output. The output of each
localiser at each time step is a binary result indicating if it
is still successfully localised:

L(jE ,F
k

) =

⇢
1 if localised
0 if lost. (3)

If successful, the localiser can be queried for the node in the
experience that F

k

was nearest to.

m j Ē(F
k

) (4)

Once a localiser is declared lost, it stays in this state until
receives outside assistance, discussed in Section III-E.2.

C. Experience Creation

We define N to be the minimum acceptable number of
successful localisers at any time. For each frame, the set of
active experiences A is computed (discussed in Section III-
E.1). For each experience in A, its associated localiser runs
and the result is a binary vector S indicating the success

1So every landmark has a unique ID.



Algorithm 1 Plastic Mapping
bool Saving
while 1 do

F
k

= GetFrame()
{n

k

, t

k

} VO(F
k

)
A = ComputeActiveLocalisers(PM)
S = Localise(A,F

k

)
if |S| < N then

Saving = True
jE  {jE ,j E

m

}
else if |S| >= N && Saving==True then

Saving = False
PM {PM,

j E}
end if

end while

or failure of each. If |S| falls below N a new experience
jE is created and the VO output is saved until |S| returns
to greater than or equal to N . This process is described by
Algorithm 1.

By allowing N to be greater than 1, the system is more
robust to single localisation failures and it gives us more
confidence in our position. This creates multiple experiences
that encompass the same physical place and visual appear-
ance, leading to common features across experiences. We
choose not to merge, average or discard shared features as we
want to explicitly avoid the difficult data association problem
across experiences.

D. Interweaving Experiences

The plastic map stores many experiences covering an
unbounded spatial area, in addition to capturing different
appearances of the same area, thus they will not all be
relevant all the time. The robots’ spatial position in its envi-
ronment will not be captured by all experiences. Therefore
it is necessary to calculate which are applicable for F

k

.
Experiences are not stored in a single frame of reference,
so it is not possible to integrate local transforms to estimate
the position in one from another. To overcome this problem
we introduce the idea of places, which create topological
links between experiences. We refer to all places as P and
the zth place as Pz . Pz = {jE

m

}, is the set of all nodes
(taken from various experiences) which are known to have
been concurrently localised against. This is a set of camera
frames viewing the same physical place.

When F
k

is simultaneously localised in more than one ex-
perience we can create a place. By querying each successful
localiser for its nearest node, we can create a place with the
set {jE

m

}
k

. However it is also possible a previously created
place contains some of these nodes, in which case we merge
the sets created from F

k

and the previous place.

Pz = Pz [
h[

j

j Ē(F
k

)
i

| {z }
Fk

(5)
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Fig. 4. A simple example of how places are created and updated. A previous
frame, F

previous

, was able to simultaneously localise in experience 1 and
2 creating place A. F

k

is able to simultaneously localise in experience 2
and 3, creating place B. As A and B share nodes (from experience 2), they
are merged to create place C.

Where Pz on the right hand side is potentially an empty
set depending on whether the nodes generated from F

k

are
in previous places. A simple example of place creation and
merging is shown in Fig. 4. Note that the shared node in
experience 2 causes places A and B to be merged into place
C. A place is also created when a new experience begins
saving, using the last successful localisation nodes.

Places are used to link experiences. We require the ability
to query all places with a set of experience nodes, and receive
the set of places which contain these nodes. This query is
defined via ⌦.

{Pz} ⌦({jE
m

}) (6)

E. Leveraging Places

1) Computing Relevant Experiences: As noted above, not
all stored experiences will be relevant for F

k

as they will
not cover the robots current position. Therefore we allow
localisers to take two states, active and inactive. Before
processing F

k

, the set of successful localiser positions from
the previous frame, {jE

m

}
k�1, are used to generate the set

of related places:

{Pz}
related

 ⌦({jE
m

}
k�1) (7)

Each inactive localiser then queries {Pz}
related

for the
presence of its own nodes, and if any are present, it activates
itself at the retrieved position. When the robot moves beyond
the range of an experience, the associated localiser sets itself
to inactive.

2) Reinitialising Lost Localisers: Localisers get lost be-
cause they can no longer track the current frame, however
this may only be a temporary state. They may become rele-
vant again a short while later, and therefore it is important to
attempt to reinitialise lost localisers. Failure to do so results



Fig. 5. The group’s vehicle, the Wildcat, was used to collect 37km of
visual data.

in the system saving more experiences than necessary. This
problem is identical to computing the relevant experiences
discussed in Section III-E.1. Given a known location in one
experience do we know our position in another through
places? Periodically lost localisers query {Pz}

related

to see
if they can be reinitialised.

F. External Loop Closing

Sometimes all of the localisation processes become lost,
at which point the system does not know where it is in the
plastic map. This may be because the current location has
changed significantly (e.g. it snowed), or because the robot
is exploring a new route. In either case the VO system will
continue to process the live frame stream and will be saving
the output to a new experience. However it is possible the
robot will subsequently return to a place it can successfully
localise in and regain its position in the plastic map. For a
solution to this problem, which should become less and less
frequent over repeated traverses, we use an external loop
closer which can reinitialise lost localisers.

IV. IMPLEMENTATION

A key property of our system is that once the set of
relevant localisers has been computed, localisation of the
current live frame in each one is independent and so can
be run in parallel. Given that the data association and
trajectory estimation steps dominate the computation time,
by parallelising them we are able to process frames at 15Hz.
To achieve robust data association we use Binary Robust
Independent Elementary Features (BRIEF) descriptors [12].
These features are very fast to compute and match, while
providing comparable performance to SURF [13], yet they
only require the CPU. We note that GPU implementations of
descriptors like SURF are available [14] and allow frame rate
performance. However if we used a GPU implementation
of such a descriptor (to achieve frame rate processing), the
matching step in each localiser, and the live VO system,
would require access to the GPU. Note that feature extraction
on the incoming frame is independent and can be performed
once at the start. As most systems only have one or two
GPUs at best, and the number of active localisers and VO
system is often larger than this, the dependancy on a GPU
makes parallelisation difficult, compared to running a CPU-
only program on a multi-core or multi-process system.
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Fig. 7. Overhead of the two routes visited during data collection. The
outer loop, indicated by the thicker line was driven 47 times, while the
inner loop, shown by the thinner line was driven 6 times. The intensity of
the trace shows how many experiences have been laid down at each point.
See Fig. 6 for examples of places with high and low experience density.

We use the FAST corner extractor [15] to compute
points of interest for BRIEF. Matched landmarks are re-
fined to sub-pixel precision using efficient second-order
matching, described by Mei [16]. The 6 DoF trans-
forms t

k

computed by the VO system, when compared
to the same relative transforms computed by the ve-
hicle INS (which we assume is ground truth) have a
mean error of [�0.0093,�0.0041,�0.0420] meters and
[�0.0239, 0.0021, 0.0040] degrees and standard deviation of
[0.0225, 0.0245, 0.0155] meters and [0.0918, 0.0400, 0.0383]
degrees.

To determine if a localiser is successfully localising, i.e.
L(jE ,F

k

) = 1, we use two metrics. Firstly we require
that the number of landmarks successfully matched from
the previous experience to the live frame be at least 5%
of the total number of landmarks searched for. Secondly we
require that the translation from F

k�1 to F
k

computed by
the localiser be within 15% of the same translation computed
by the VO system running on the live stream.

V. RESULTS

A. A Three Month Experiment

To test our framework we collected 53 traverses of two
semi-overlapping 0.7km routes around Begbroke Science
Park. Data was collected over a three month period at
different times of day and with different weather conditions
using the group’s survey vehicle, the Wildcat. Fig. 7 shows
an overhead of the site, along with the two routes driven.
The outer loop, denoted by the thicker line, was driven on
the first 47 traverses while the last 6 traverses went via the
inner loop, indicated by the thinner line. The intensity of the
plot indicates how many experiences have been laid down at
each point. For illustrative purposes we controlled the signal
from the external loop closer so it only fired at 14 predefined
points on each loop. The points were spaced approximately
evenly along each loop.
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Fig. 6. (a) and (b) are examples of places that have a large number of experiences associated with them. In (a) this is because the configuration of the
car park changes daily, meaning past experiences are difficult to localise in. (b) suffers from strong shadowing effects due to overhanging trees and the
road often has a large amount of fallen foliage on it. Both of these cases motivate the use of running the VO system continuously in parallel with the
localisers. (c) and (d) are examples of places that have low visual variation and a relatively low number of saved experiences are needed to stay localised.

Some regions require more experiences than others. In
Fig. 6 we show examples of places which exhibit both low
and high visual variation. One example of a region that has
high visual variation is the car park, Fig. 6(a). The contents
and configuration of this space varies daily, so experiences
stored on previous days are unlikely to be useful. Another
is a section of road covered by overhanging trees, Fig. 6(b).
Sunlight causes strong and intricate shadowing effects. While
these are useful for the live VO system, they are often
not encountered again meaning previous experiences are not
useful. This encourages the use of the live VO system at all
times.

Fig. 8 shows how much of each traverse is saved, along
with the time of day it was captured. Here the visit numbers
are in the order in which the data was collected. The large
jump around traverses 35-38 happens because for the first
time we collected data as dusk fell. The roads also had
standing pools of water and it was raining lightly, something
the system had not encountered before. The second spike
at visit 47 is caused by driving the inner loop for the first
time. Suddenly no localisations are successful and the whole
section is saved until the loop closer fires. Fig. 12 shows
examples of localisation failures on visit 4, where strong
shadowing effects are encountered for the first time. Fig.
13 shows examples of localisation failures on visit 38 when
driving at dusk on wet roads. However apart from these cases
where we explicitly did something out of the ordinary to test
the system (like driving at dusk or a different route), we find
that as we revisit the route we typically need to remember
less and less each time.

B. Are Multiple Experiences Needed?

To demonstrate the value of saving multiple experiences
and building the plastic map, we evaluated what would hap-
pen if we made only one previous experience available. This
represents the model most traditional localisation methods
use, where a single previous view of the world is privileged
and assumed correct (often the first experience of the world),
and no attempt is made to capture the changing environment.
For every visit we used every other visit as the only available
saved experience. We calculated the amount of VO output
that needed to be saved in each case, indicating localisation
failure, and averaged the results. These are shown in Fig.
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Fig. 8. For each traverse along the route, we show the fraction of the VO
output that is saved for future use. Results shown for minimum number of
localisers N = 1, N = 2 and N = 3. For the first 47 visits the outer loop
was driven. On the final 6 traverses the inner loop was driven, resulting
in the spike as a new area is saved. Note that the rest of the experience
is relevant so only the new fraction is added. Visits 35-38 were done as
dusk fell with light rain present. Both of these conditions had not been
experienced before, resulting in large additions to the plastic map. See Fig.
13 for examples of Visit 38. For each visit we also computed the fraction of
the saved VO output when every other visit was used as a single available
experience and averaged the results. We refer to this as Average with Single
Previous Experience (AwSPE).

8, referred to as Average with Single Previous Experience
(AwSPE). Across all visits, the average VO output saved is
65.8%, and no one visit is particularly “good” as a prior for
other visits. This motivates the use of multiple experiences
to represent the environment.

Over time, baring new routes, our system produces a
1/(TraverseCount) decay as the system captures the typ-
ical variation of the route. The order in which the data
were collected is a privileged sequence. However it could be
ordered in 53! ways to produce different performance graphs.
To make the point we performed a greedy re-ordering. We
moved the 10 most surprising traverses of the outer route
and the 6 inner traverses to the beginning and re-ran the
system. The resulting performance graph is shown in Fig. 10.
Now we have moved the most “interesting” and “surprising”
visits to the beginning of the plastic map creation we see that
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Fig. 12. Examples of localisation failure leading to the creation of new saved experiences on visit 4. Frames (a) and (c) are from previously saved
experiences and frames (b) and (d) are the live stream.
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Fig. 13. Examples of localisation failure leading to the creation of new saved experiences on visit 38. Frames (a) and (c) are from previously saved
experiences and frames (b) and (d) are the live stream.
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Fig. 9. Weather statistics for each traverse [17].

accumulation of experiences stays high until visit 18 before
dropping off significantly.

We also classified each traverse as either overcast or sunny
(the weather for each visit is shown in Fig. 9). We ran the
system using only overcast or sunny experiences, the results
of which are shown in Fig. 11. (We removed the 4 dusk
and 6 inner loop traverses.) Interestingly with the overcast
only visits, we quickly accumulate sufficient experiences to
manage cloudy conditions, while the sunny traverses have a
slight offset bias. We believe this to be caused by shadowing
effects making localisation in previous experiences difficult.

Finally we show the performance of the system running
on the Wildcat hardware in Fig. 14. The Wildcat houses
2 Intel Xeon X5570 2.93GHz CPUs, offering 16 cores
(with hyper-threading). Shown is the number of successful
localisers and timing performance for each frame on visit 47,
which is the first traverse of the inner loop. Localisation is
successful until frame 1296, at which point the vehicle turns
onto the inner loop. At this point a new experience begins.
At frame 2239 the external loop closer fires and results
in successful localisation, so saving of the new experience
stops. Despite varying numbers of active localisers the timing
per frame typically stays under 100ms, while the average
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Fig. 10. The traverse order has been greedily re-arranged. The 10 worst
performing visits and 6 inner loop visits from Fig. 8 were shifted to the
beginning and the system re-run.

for the successful localisation part of the sequence (i.e. not
including frames 1296-2239) is 53ms. This is possible due
to the ability to parallelise the localisation processing across
the Wildcat CPU cores.

As noted previously, our approach has been implemented
using a stereo camera, but would also be applicable to lidar
sensors. It is likely that the higher number of experiences
saved during sunny conditions, suggested by Fig. 11 and
demonstrated in Fig. 6(b), could be moderated by using a
lidar as it would be less affected by the changing lighting
conditions. However such a system would still need to lay
down multiple experiences in regions which undergo gross
structural change, such as the car park shown in Fig. 6(a).
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Fig. 11. Performances of only overcast (top) vs. only sunny (bottom)
traverses. Notice the constant offset for sunny conditions compared to
overcast conditions. This is probably caused by strong shadows making
localisation difficult in previous experiences.
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Fig. 14. Timing performance (using the Wildcat hardware) and number
of successful localisers for each frame on visit 47, the first traverse of the
inner loop. Only when the robot is driving on the previously unseen road is
the VO saved, otherwise localisation is always successful. In the regions of
previously seen road the average number of successful localisers is 7, and
the average localisation time per frame during this period is 53ms.

VI. CONCLUSION

In this paper we have demonstrated continuous localisation
of a road vehicle in drastically changing lighting and weather
conditions over a 3 month period. This was possible because
we adopted the notion of plastic mapping. We focussed
not on building a single monolithic map or inferring a
latent underlying state which explains all observations of
the workspace but on creating a composite representation
constructed from multiple overlapping experiences. This
representation is only as complex and rich as it needs to
be. It handles both drastic and creeping changes in the
same way - as soon as prior experiences fail to adequately
describe the present a new experience is saved for future
reference. We have shown our system working in real time
embedded on a vehicle. We have shown the advantages of
plastic maps in localisation performance (robustness) and,

using the 3 months of data we possess at the time of writing,
have demonstrated the asymptotic behaviour of plastic map
maintenance. Starting with a core competency (in our case
VO) day on day, week on week, we are extending our vehi-
cle’s operating envelope; gradually making the extraordinary
ordinary. We hope that practice will make perfect.
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