Exercise: Graph-Based SLAM

Implement a least-squares method to address SLAM in its graph-based formulation. To support this task, we provide a small Octave framework (see course website). The framework contains the following folders:

data contains several datasets, each gives the measurements of one SLAM problem

octave contains the Octave framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the directory *octave* by completing the stubs:

1. • Implement the function in `compute_global_error.m` for computing the current error value for a graph with constraints.

 • Implement the function in `linearize_pose_pose_constraint.m` for computing the error and the Jacobian of a pose-pose constraint. Test your implementation with `test_jacobian_pose_pose`.

 • Implement the function in `linearize_pose_landmark_constraint.m` for computing the error and the Jacobian of a pose-landmark constraint. Test your implementation with `test_jacobian_pose_landmark`.

2. • Implement the function in `linearize_and_solve.m` for constructing and solving the linear approximation.

 • Implement the update of the state vector and the stopping criterion in `lsSLAM.m`. A possible choice for the stopping criterion is $\|\Delta x\|_\infty < \epsilon$, i.e., $\|\Delta x\|_\infty = \max(|\Delta x_1|, \ldots, |\Delta x_n|) < \epsilon$.

After implementing the missing parts, you can run the framework. To do that, change into the directory octave and launch Octave. To start the main loop, type `lsSLAM`. The script will produce a plot showing the positions of the robot and (if
available) the positions of the landmarks in each iteration. These plots will be saved in the `plots` directory.

Figure 1 depicts the result that you should obtain after convergence for each dataset. Additionally, the initial and the final error for each dataset should be approximately:

<table>
<thead>
<tr>
<th>dataset</th>
<th>initial error</th>
<th>final error</th>
</tr>
</thead>
<tbody>
<tr>
<td>simulation-pose-pose.dat</td>
<td>138862234</td>
<td>8269</td>
</tr>
<tr>
<td>intel.dat</td>
<td>1795139</td>
<td>360</td>
</tr>
<tr>
<td>simulation-pose-landmark.dat</td>
<td>3030</td>
<td>474</td>
</tr>
<tr>
<td>dlr.dat</td>
<td>369655336</td>
<td>56860</td>
</tr>
</tbody>
</table>

The state vector contains the following entities:

- pose of the robot: \(\mathbf{x}_i = (x_i, y_i, \theta_i)^T \)

 Hint: You may use the function v2t(\(\cdot \)) and t2v(\(\cdot \)):

 \[
 v2t(\mathbf{x}_i) = \begin{pmatrix} R_i & \mathbf{t}_i \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) & x_i \\ \sin(\theta_i) & \cos(\theta_i) & y_i \\ 0 & 0 & 1 \end{pmatrix} = X_i
 \]

 \[
 t2v(X_i) = \mathbf{x}_i
 \]

- position of a landmark: \(\mathbf{x}_l = (x_l, y_l)^T \)

We consider the following error functions:

- pose-pose constraint: \(\mathbf{e}_{ij} = t2v(Z^{-1}_{ij}(X^{-1}_iX_j)) \), where \(Z_{ij} = v2t(\mathbf{z}_{ij}) \) is the transformation matrix of the measurement \(\mathbf{z}_{ij}^T = (\mathbf{t}_{ij}^T, \theta_{ij}) \).

 Hint: For computing the Jacobian, write the error function with rotation matrices and translation vectors:

 \[
 \mathbf{e}_{ij} = \begin{pmatrix} (R_i^T(R_i^T(\mathbf{t}_j - \mathbf{t}_i) - \mathbf{t}_{ij}) \theta_j - \theta_i - \theta_{ij} \\ \theta_j - \theta_i - \theta_{ij} \end{pmatrix}
 \]

- pose-landmark constraint: \(\mathbf{e}_{il} = R_i^T(\mathbf{x}_l - \mathbf{t}_i) - \mathbf{z}_{il} \)