Robot Mapping

A Short Introduction to Homogeneous Coordinates

Cyrill Stachniss

Projective Geometry

- Projective geometry does not change the geometric relations
- Computations can also be done in Euclidian geometry (but more difficult)

Motivation

- Cameras generate a projected image of the world
- Euclidian geometry is suboptimal to describe the central projection
- In Euclidian geometry, the math can get difficult
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Math becomes simpler

Homogeneous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Formulas involving H.C. are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates
- A single matrix can represent affine transformations and projective transformations

Homogeneous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Formulas involving H.C. are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates
- A single matrix can represent affine transformations and projective transformations

From Homogeneous to Euclidian Coordinates

homogeneous

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
u / w \\
v / w \\
1
\end{array}\right] \rightarrow\left[\begin{array}{l}
u / w \\
v / w
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Homogeneous Coordinates

Definition

- The representation x of a geometric object is homogeneous if \mathbf{x} and $\lambda \mathbf{x}$ represent the same object for $\lambda \neq 0$

Example

$$
\mathbf{x}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

From Homogeneous to Euclidian Coordinates

$\left[\begin{array}{c}u \\ v \\ w\end{array}\right]=\left[\begin{array}{c}u / w \\ v / w \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}u / w \\ v / w\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$

Center of the Coordinate System

$$
\mathbf{O}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \mathbf{O}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Infinitively Distant Objects

- It is possible to explicitly model infinitively distant points with finite coordinates

$$
\mathbf{x}_{\infty}=\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right]
$$

- Great tool when working with bearingonly sensors such as cameras

Transformations

- A projective transformation is a invertible linear mapping

$$
\mathbf{x}^{\prime}=M \mathbf{x}
$$

Important Transformations (\mathbb{P}^{3})

- General projective mapping

$$
\mathbf{x}^{\prime}=\underset{4 \times 4}{M} \mathbf{x}
$$

- Translation: 3 parameters

Recap - Rotation Matrices

$$
\begin{aligned}
& R^{2 D}(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \\
& R_{x}^{3 D}(\omega)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\omega) & -\sin (\omega) \\
0 & \sin (\omega) & \cos (\omega)
\end{array}\right] \quad R_{y}^{3 D}(\phi)=\left[\begin{array}{ccc}
\cos (\phi) & 0 & \sin (\phi) \\
0 & 1 & 0 \\
-\sin (\phi) & 0 & \cos (\phi)
\end{array}\right] \\
& R_{z}^{3 D}(\kappa)=\left[\begin{array}{ccc}
\cos (\kappa) & -\sin (\kappa) & 0 \\
\sin (\kappa) & \cos (\kappa) & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R^{3 D}(\omega, \phi, \kappa)=R_{z}^{3 D}(\kappa) R_{y}^{3 D}(\phi) R_{x}^{3 D}(\omega)
\end{aligned}
$$

Important Transformations (\mathbb{P}^{3})

- Rotation: 3 parameters
(3 rotation)

$$
M=\underset{\substack{\text { rotation } \\
\text { matrix }}}{\lambda} \underbrace{R} \begin{array}{c}
\mathbf{0} \\
\mathbf{0}^{\Uparrow} \\
1
\end{array}]
$$

Important Transformations (\mathbb{P}^{3})

- Rotation: 3 parameters
(3 rotation)

$$
M=\lambda\left[\begin{array}{rr}
R & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

- Rigid body transformation: 6 params (3 translation +3 rotation)

$$
M=\lambda\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

Important Transformations (\mathbb{P}^{3})

- Similarity transformation: 7 params (3 trans +3 rot +1 scale)

$$
M=\lambda\left[\begin{array}{cc}
m R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

- Affine transformation: 12 parameters (3 trans +3 rot +3 scale +3 sheer)

$$
M=\lambda\left[\begin{array}{cc}
A & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

Transformations

- Inverting a transformation

$$
\begin{aligned}
\mathbf{x}^{\prime} & =M \mathbf{x} \\
\mathbf{x} & =M^{-1} \mathbf{x}^{\prime}
\end{aligned}
$$

- Chaining transformations via matrix products (not commutative)

$$
\begin{aligned}
\mathbf{x}^{\prime} & =M_{1} M_{2} \mathbf{x} \\
& \neq M_{2} M_{1} \mathbf{x}
\end{aligned}
$$

Transformations in \mathbb{P}^{2}

Motions

- We will express motions (rotations and translations) using H.C.

$$
M=\lambda\left[\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]
$$

- Chaining transformations via matrix products (not commutative)

$$
\begin{aligned}
\mathbf{x}^{\prime} & =M_{1} M_{2} \mathbf{x} \\
& \neq M_{2} M_{1} \mathbf{x}
\end{aligned}
$$

Conclusion

- Homogeneous coordinates are an alternative representation for geometric objects
- Equivalence up to scale

$$
\mathbf{x} \equiv \lambda \mathbf{x} \text { with } \lambda \neq 0
$$

- Modeled through an extra dimension
- Homogeneous coordinates can simplify mathematical expressions
- We often use it to represent the motion of objects

Literature

TOPIC

- Wikipedia as a good summary on homogeneous coordinates:
http://en.wikipedia.org/wiki/Homogeneous_coordinates

