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Motivation

= Cameras generate a projected image
of the world

= Euclidian geometry is suboptimal to
describe the central projection

= In Euclidian geometry, the math can
get difficult

= Projective geometry is an alternative
algebraic representation of geometric
objects and transformations

= Math becomes simpler



Projective Geometry

= Projective geometry does not change
the geometric relations

= Computations can also be done in
Euclidian geometry (but more difficult)



Homogeneous Coordinates

= H.C. are a system of coordinates used
In projective geometry

= Formulas involving H.C. are often
simpler than in the Cartesian world

= Points at infinity can be represented
using finite coordinates

= A single matrix can represent affine
transformations and projective
transformations



Homogeneous Coordinates

= H.C. are a system of coordinates used
In projective geometry

= Formulas involving H.C. are often
simpler than in the Cartesian world

= Points at infinity can be represented
using finite coordinates

= A single matrix can represent
affine transformations and
projective transformations



Homogeneous Coordinates

Definition
= The representation x of a geometric

object is homogeneous if x and Ax
represent the same object for \ # 0

Example
o wx | x|
X = () — wy — y
W W _1_




From Homogeneous to
Euclidian Coordinates
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From Homogeneous to
Euclidian Coordinates
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Center of the Coordinate System
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Infinitively Distant Objects

= [t is possible to explicitly model
infinitively distant points with finite
coordinates
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= Great tool when working with bearing-
only sensors such as cameras
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3D Points

= Analogous for 3D points
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Transformations

= A projective transformation is a
invertible linear mapping

/
X = Mx
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Important Transformations ([P3)

= General projective mapping
x' =M x

= Translation: 3 parameters
(3 translations) —] =
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Important Transformations ([P3)

= Rotation: 3 parameters
(3 rotation)

‘PO
1

M = A

rotation
matrix



Recap — Rotation Matrices

oD/ |cos(f) —sin(0)
R7(0) = [sin(@) cos(6) ]
1 0 0 [ cos(¢) 0 sin(¢)
R3P(w)= {0 cos(w) —sin(w) R??;D(@ 0 1 0
0 sin(w) cos(w) —sin(¢) 0 cos(¢)
‘cos(k) —sin(k) 0
R3P (k) = |sin(k) cos(k) 0
0 0 1
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Important Transformations ([P3)

= Rotation: 3 parameters
(3 rotation)

‘RO

M:A_oT 1

= Rigid body transformation: 6 params
(3 translation + 3 rotation)

R t

M:A_oT 1




Important Transformations ([P3)

= Similarity transformation: 7 params
(3 trans + 3 rot + 1 scale)

‘mR t

M:A_oT 1

= Affine transformation: 12 parameters
(3 trans + 3 rot + 3 scale + 3 sheer)

At

M=2Alom 1




Transformations in P?
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Transformations

= [Inverting a transformation
x' = Mx
x = M X

= Chaining transformations via matrix
products (not commutative)

X/ = MlMgX
7& MQMlX



Motions

= We will express motions (rotations
and translations) using H.C.

R t

M:)\_OT 1

= Chaining transformations via matrix
products (not commutative)

X/ — MlMQX
# MQMlX



Conclusion

= Homogeneous coordinates are an
alternative representation for
geometric objects

= Equivalence up to scale
X = Ax with A #£ 0
= Modeled through an extra dimension

= Homogeneous coordinates can simplify
mathematical expressions

= We often use it to represent the
motion of objects
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Literature

TOPIC

= Wikipedia as a good summary on
homogeneous coordinates:

http://en.wikipedia.org/wiki/Homogeneous_coordinates
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