Robot Mapping

A Short Introduction to the Bayes Filter and Related Models

Cyrill Stachniss

1

State Estimation

- Estimate the state \boldsymbol{x} of a system given observations \boldsymbol{z} and controls \boldsymbol{u}

Goal:

 $p(x \mid z, u)$

Recursive Bayes Filter 1

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$

Definition of the belief

Recursive Bayes Filter 2

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ $= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$

Bayes' rule

Recursive Bayes Filter 7

 $\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \\ &= p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1} \\ &= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1} \\ &= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1} \\ &= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1} \end{aligned}$ Recursive term

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

sensor or observation model

Prediction and Correction Step

- Bayes filter can be written as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

10

Different Realizations

- The Bayes filter is a **framework** for recursive state estimation
- There are different realizations

Different properties

- Linear vs. non-linear models for motion and observation models
- Gaussian distributions only?
- Parametric vs. non-parametric filters
- ...

In this Course

Kalman filter & friends

- Gaussians
- Linear or linearized models

Particle filter

- Non-parametric
- Arbitrary models (sampling required)

Motion Model

 $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

14

Robot Motion Models

- Robot motion is inherently uncertain
- How can we model this uncertainty?

Probabilistic Motion Models

 Specifies a posterior probability that action u carries the robot from x to x'.

$$p(x_t \mid u_t, x_{t-1})$$

Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based
- Odometry-based models for systems that are equipped with wheel encoders
- Velocity-based when no wheel encoders are available

Odometry Model

- Robot moves from $(\bar{x}, \bar{y}, \bar{\theta})$ to $(\bar{x}', \bar{y}', \bar{\theta}')$
- Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$

Probability Distribution

• Noise in odometry $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$

 $u \sim \mathcal{N}(0, \Sigma)$

17

Example: Gaussian noise

Examples (Odometry-Based)

Velocity-Based Model

21

Problem of the Velocity-Based Model

- Robot moves on a circle
- The circle constrains the final orientation
- Fix: introduce an additional noise term on the final orientation

Motion Equation

- Robot moves from (x,y,θ) to (x',y',θ')
- Velocity information $u = (v, \omega)$

$$\begin{pmatrix} x'\\y'\\\theta' \end{pmatrix} = \begin{pmatrix} x\\y\\\theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t)\\\frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t)\\\omega\Delta t \end{pmatrix}$$

22

Motion Including 3rd Parameter

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t + \gamma\Delta t \end{pmatrix}$$

Term to account for the final rotation

Sensor Model

$$bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_{t-1})$$

26

Model for Laser Scanners

Scan z consists of K measurements.

$$z_t = \{z_t^1, \dots, z_t^k\}$$

 Individual measurements are independent given the robot position

$$p(z_t \mid x_t, m) = \prod_{i=1}^k p(z_t^i \mid x_t, m)$$

Beam-Endpoint Model

Beam-Endpoint Model

Model for Perceiving Landmarks with Range-Bearing Sensors

- Range-bearing $z_t^i = (r_t^i, \phi_t^i)^T$
- Robot's pose $(x, y, \theta)^T$
- Observation of feature j at location $(m_{j,x}, m_{j,y})^T$

$$\left(\begin{array}{c} r_t^i\\ \phi_t^i \end{array}\right) = \left(\begin{array}{c} \sqrt{(m_{j,x}-x)^2 + (m_{j,y}-y)^2}\\ \operatorname{atan2}(m_{j,y}-y,m_{j,x}-x) - \theta \end{array}\right) + Q_t$$

Ray-cast Model

- Ray-cast model considers the first obstacle long the line of sight
- Mixture of four models

30

Summary

- Bayes filter is a framework for state estimation
- Motion and sensor model are the central models in the Bayes filter
- Standard models for robot motion and laser-based range sensing

Literature

On the Bayes filter

- Thrun et al. "Probabilistic Robotics", Chapter 2
- Course: Introduction to Mobile Robotics, Chapter 5

On motion and observation models

- Thrun et al. "Probabilistic Robotics", Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7