Robot Mapping

A Short Introduction to the Bayes Filter and Related Models

Cyrill Stachniss

State Estimation

- Estimate the state x of a system given observations z and controls u

- **Goal:**

\[
p(x \mid z, u)
\]

Recursive Bayes Filter 1

\[
bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})
\]

Definition of the belief

Recursive Bayes Filter 2

\[
bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})
= \eta \frac{p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})}{p(z_t \mid z_{1:t-1}, u_{1:t})}
\]

Bayes’ rule
Recursive Bayes Filter 3

\[\text{bel}(x_t) = p(x_t \mid z_{1:t}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]

Markov assumption

Recursive Bayes Filter 4

\[\text{bel}(x_t) = p(x_t \mid z_{1:t}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} \]

Law of total probability

Recursive Bayes Filter 5

\[\text{bel}(x_t) = p(x_t \mid z_{1:t}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} \]

Markov assumption

Recursive Bayes Filter 6

\[\text{bel}(x_t) = p(x_t \mid z_{1:t}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \]
\[= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} \]

Markov assumption
Recursive Bayes Filter

\(\text{bel}(x_t) = p(x_t \mid z_{1:t}, u_{1:t}) \)

\(= \eta \, p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \, p(x_t \mid z_{1:t-1}, u_{1:t}) \)

\(= \eta \, p(z_t \mid x_t) \, \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} \)

\(= \eta \, p(z_t \mid x_t) \, \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \, p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \, dx_{t-1} \)

\(= \eta \, p(z_t \mid x_t) \, \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \, \text{bel}(x_{t-1}) \, dx_{t-1} \)

Recursive term

Prediction and Correction Step

- Bayes filter can be written as a two step process
- **Prediction step**

\[\overline{\text{bel}}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \, \text{bel}(x_{t-1}) \, dx_{t-1} \]

- **Correction step**

\[\text{bel}(x_t) = \eta \, p(z_t \mid x_t) \, \overline{\text{bel}}(x_t) \]

Motion and Observation Model

- **Prediction step**

\[\overline{\text{bel}}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \, \text{bel}(x_{t-1}) \, dx_{t-1} \]

motion model

- **Correction step**

\[\text{bel}(x_t) = \eta \, p(z_t \mid x_t) \, \overline{\text{bel}}(x_t) \]

sensor or observation model

Different Realizations

- The Bayes filter is a **framework** for recursive state estimation
- There are **different realizations**
- **Different properties**
 - Linear vs. non-linear models for motion and observation models
 - Gaussian distributions only?
 - Parametric vs. non-parametric filters
 - ...
In this Course

- **Kalman filter & friends**
 - Gaussians
 - Linear or linearized models

- **Particle filter**
 - Non-parametric
 - Arbitrary models (sampling required)

Motion Model

$$\overline{\text{bel}(x_t)} = \int p(x_t \mid u_t, x_{t-1}) \text{bel}(x_{t-1}) \, dx_{t-1}$$

Robot Motion Models

- Robot motion is inherently uncertain
- How can we model this uncertainty?

Probabilistic Motion Models

- Specifies a posterior probability that action u carries the robot from x to x'.

$$p(x_t \mid u_t, x_{t-1})$$
Typical Motion Models

- In practice, one often finds two types of motion models:
 - **Odometry-based**
 - **Velocity-based**

- Odometry-based models for systems that are equipped with wheel encoders
- Velocity-based when no wheel encoders are available

Odometry Model

- Robot moves from \((\bar{x}, \bar{y}, \bar{\theta})\) to \((\bar{x}', \bar{y}', \bar{\theta}')\)
- Odometry information \(u = (\delta_{\text{rot}1}, \delta_{\text{trans}}, \delta_{\text{rot}2})\)

\[
\begin{align*}
\delta_{\text{trans}} &= \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2} \\
\delta_{\text{rot}1} &= \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\
\delta_{\text{rot}2} &= \bar{\theta}' - \bar{\theta} - \delta_{\text{rot}1}
\end{align*}
\]

Probability Distribution

- Noise in odometry \(u = (\delta_{\text{rot}1}, \delta_{\text{trans}}, \delta_{\text{rot}2})\)
- Example: Gaussian noise

\[
u \sim \mathcal{N}(0, \Sigma)\]

Examples (Odometry-Based)
Velocity-Based Model

\[u = (v, \omega)^T \]

Problem of the Velocity-Based Model

- Robot moves on a circle
- The circle constrains the final orientation
- \textbf{Fix:} introduce an additional noise term on the final orientation

Motion Equation

- Robot moves from \((x, y, \theta)\) to \((x', y', \theta')\)
- Velocity information \(u = (v, \omega)\)

\[
\begin{pmatrix}
 x' \\
 y' \\
 \theta'
\end{pmatrix}
= \begin{pmatrix}
 x \\
 y \\
 \theta
\end{pmatrix} + \begin{pmatrix}
 -\frac{v}{\omega} \sin \theta + \frac{v}{\omega} \sin(\theta + \omega t) \\
 \frac{v}{\omega} \cos \theta - \frac{v}{\omega} \cos(\theta + \omega t) \\
 \omega \Delta t
\end{pmatrix}
\]

Motion Including 3rd Parameter

\[
\begin{pmatrix}
 x' \\
 y' \\
 \theta'
\end{pmatrix}
= \begin{pmatrix}
 x \\
 y \\
 \theta
\end{pmatrix} + \begin{pmatrix}
 -\frac{v}{\omega} \sin \theta + \frac{v}{\omega} \sin(\theta + \omega t) \\
 \frac{v}{\omega} \cos \theta - \frac{v}{\omega} \cos(\theta + \omega t) \\
 \omega \Delta t + \gamma \Delta t
\end{pmatrix}
\]

Term to account for the final rotation
Examples (Velocity-Based)

Model for Laser Scanners

- Scan z_t consists of K measurements.

 \[z_t = \{ z_t^1, \ldots, z_t^K \} \]

- Individual measurements are independent given the robot position

\[
p(z_t | x_t, m) = \prod_{i=1}^{k} p(z_t^i | x_t, m)
\]

Sensor Model

\[
\text{bel}(x_t) = \eta \ p(z_t | x_t) \ \text{bel}(x_{t-1})
\]
Beam-Endpoint Model

Ray-cast Model
- Ray-cast model considers the first obstacle along the line of sight
- Mixture of four models

Model for Perceiving Landmarks with Range-Bearing Sensors
- Range-bearing \(z_t^i = (r_t^i, \phi_t^i)^T \)
- Robot’s pose \((x, y, \theta)^T \)
- Observation of feature \(j \) at location \((m_{j,x}, m_{j,y})^T \)

\[
\begin{pmatrix}
 r_t^i \\
 \phi_t^i
\end{pmatrix}
 = \left(\begin{pmatrix}
 \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\
 \arctan2(m_{j,y} - y, m_{j,x} - x) - \theta
\end{pmatrix} + Q_t \right)
\]

Summary
- Bayes filter is a framework for state estimation
- Motion and sensor model are the central models in the Bayes filter
- Standard models for robot motion and laser-based range sensing
Literature

On the Bayes filter
- Thrun et al. “Probabilistic Robotics”, Chapter 2
- Course: Introduction to Mobile Robotics, Chapter 5

On motion and observation models
- Thrun et al. “Probabilistic Robotics”, Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7