Robot Mapping

Extended Kalman Filter

Cyrill Stachniss

UNI
FREIBURG

SLAM iIs a State Estimation
Problem

= Estimate the map and robot’s pose

= Bayes filter is one tool for state
estimation

» Prediction

bel(x;) = /p(xt g, xp1) bel(xi_1) dri_q

= Correction

bel(w¢) = 1 p(zt | 1) bel(xt)

Kalman Filter

= [t is a Bayes filter
= Estimator for the linear Gaussian case

= Optimal solution for linear models and
Gaussian distributions

Kalman Filter Distribution

= Everything is Gaussian

1

p(x) = det(27%) "% exp (_

34.1% 34.1%

00 01 02 03 04

—-30 —20 —1lo M lo 20 30

Properties: Marginalization and
Conditioning

= Given (o
€T —

Lh

) p(z) =N
= The marginals are Gaussians

p(za) =N plzs) =N

= as well as the conditionals
p(aja ‘ xb) =N p(:l?b ‘ xa) =N

Marginalization
= Given p(z) = p(xq, zp) = N (1, ¥)

- _ [Ha o Za,a Zab
with #= (0) Y = (S)
= The marginal distribution is

pla) = / p(a, 23) dzy = N (11, 5)

with H = g Z:ZCLCL

Conditioning
= Given p($) — p(maa xb) — /\/'(,u, Z)

- _ [Ha o Za,a Zab
with #= (0) — (S)
» The conditional distribution is

o p($a,:ljb> o
p(il?a | 'xb) o p($b) o N(:UH Z)

with U= g + Zabzb_bl(b — Mb)
Y = S — ZabXp, Sba

Linear Model

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

vy = Ayxi—1 + Biug + €

Lt = Ct.CL’t —+ 5,5

Components of a Kalman Filter

A Matrix (n x n) that describes how the state
t evolves from ¢t — 1 to ¢ without controls or
noise.

Bt Matrix (n x 1) that describes how the control
u¢ changes the state from¢ -1 toz¢.

(', Matrix (k x n) that describes how to map the
state x; to an observation z;.

€+ Random variables representing the process
and measurement noise that are assumed to

515 be independent and normally distributed
with covariance R, and (), respectively.

Linear Motion Model

= Motion under Gaussian noise leads to

p(ﬂft \ Utaﬂft—1) =

10

Linear Motion Model

= Motion under Gaussian noise leads to

p(xt | ug, we—1) = det(QWRt)—%

1 _
eXPp <—§($t — Atill't_l — Btut)TRt 1(5[315 — Atmt—l — Btut)

» R; describes the noise of the motion

)

11

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(zt ‘ fL“t) =7

12

Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z | x¢) = det(QWQt)_%

exp (—%(Z’t — CtCUt)TQt_l(Zt — Cﬂt))

= (); describes the measurement noise

13

Everything stays Gaussian

= Given an initial Gaussian belief, the
belief is always Gaussian

Bel(a1) = / p(y | e, 1) bel(ze_1) dre_y

bel(w¢) = 1 p(zt | 1) bel(x)

= Proof is non-trivial
(see Probabilistic Robotics, Sec. 3.2.4)

14

Kalman Filter Algorithm

Kalman filter(u:_1, X1, us, 2¢):

fy = Ay py—1 + By ug
Y = Ay X1 A;,F + Ry

K, =3, CT(C, S CF + Q) !

pe = e + Ke(ze — Cy jig)
Zt — (I— Kt Ct) Zt
return i, 2¢

15

1D Kalman Filter Example (1)

_| prediction _ measurement

correction

It's a weighted mean!

= 16 16

QoS -

1D Kalman Filter Example (2)

prediction

correction

Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = Arxi_1 + Brus + €
2y = Oy + 04

What if this is not the case?

18

Non-linear Dynamic Systems

= Most realistic problems (in robotics)

involve nonlinear functions

_’575/

|

\

Lt = Q(Ut,fl?t—l) T €6 2t = h(fﬁt) + 04

19

Linearity Assumption Revisited

6 6
plyi= N y;ap+h,a%e?) m— - 3X+h
®K Mean of piy) = Meanp
) 5
4
.
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6t |
pE) = N(% w, 69
#= Mean of p(x)
4
X
21
0

Non-Linear Function

6 6
ply) — Function gix)
— Gaussian of p{y) = Meanp
4l X Meanof py) 4 Q 9w
2
> 0 i
2t
Non-Gaussian! . | |
0 0.2 04 0.6 0 8 0 0.5 1
6 p(x)
= Meanp
2|
0 s
n nE 1

21

Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

22

Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!

23

EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(us, Lhi—
g(utaxt—l) %Q(Utaﬂt—l) + g(at a 1) (xt—l —,ut—l)
_. G,
= Correction: \

h(xy) =~ h(jiy) + Jacobian matrices

24

Reminder: Jacobian Matrix
= Jtis a non-square matrix m x n in general

= GGiven a vector-valued function

/ gl(x) \
g(:v): ngﬂﬂ)
\ gm(x))
= The Jacobian matrix is defined as
/ 991 Ogq1 991 \
0x1 Oxo T oxn
Ga: — 65.81 85.62 85?71

Ogm Ogm, Ogm, /
8331 6372 e 8a7n

25

Reminder: Jacobian Matrix

= Jt is the orientation of the tangent plane to
the vector-valued function at a given point

= Generalizes the gradient of a scalar valued
function

26

EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(us, Lhi—
g(utaxt—l) %Q(Utaﬂt—l) + g(at a 1) (xt—l —,ut—l)
_. G,
= Correction: \

—_ : . I
h(xy) ~ h(ay) + Linear functions!

27

Linearity Assumption Revisited

6 6
plyi= N y;ap+h,a%e?) m— - 3X+h
®K Mean of piy) = Meanp
) 5
4
.
3
2
1 - 1 +
0 05 1 1.5 0 0.5 1
6t |
pE) = N(% w, 69
#= Mean of p(x)
4
X
21
0

Non-Linear Function

4

-4

Py
— Gaussian of p(y)

X Mean of p(y)

0 0204 06 0.8

6
— Function g(x)
= Meanp
4 O sw
_ 26/\
= 0Ot \
-2t
-4 S .
0.5 1
6 p(x)
= Meanp
2t
0 s
nK 1

29

EKF Linearization (1)

6
P(y)
— Gaussian of p{y)
4 || — EFK Gaussian

-4

¥=9()

Function gix)

Mean p

: Taylor approx.
=
O sl

o ;
0.5 1
px)
= Meanp
C 3
nE 1

30

EKF Linearization (2)

6

|

Py
— Gaussian of p(y)

— EFK Gaussian

N
p N3 '

0.5

¥=90)

Function gix)

Mean p

= Taylor approx.
=
O s

px)
= Meanp

e

EKF Linearization (3)

6
piy)
— Gaussian of p{y)
4 {| — EFK Gaussian

g(x)

¥

20 |

MY

— Function gix)
— Taylor approx.
d= Meanp

O 9w

10

=
0.5
px)
B Meanp
nE

32

Linearized Motion Model

= The linearized model leads to

1
2

p(xy | ug, x4—1) ~ det (2w Ry)

1
eXp (9 (¢ — g(ue, pe—1) — Gt (x4—1 — Mt—l))T

R (o= glur, 1) = Gu (w1 — 1))

\

linearized model

» [}, describes the noise of the motion

33

Linearized Observation Model
» The linearized model leads to

p(z | 24) = det (27Q;) ™2

exp (— % (z¢ — h(fir) — Hy (x4 — 1))"

Q7' (a1 — (,Ut) Hy (x4 — /It)))

linearized model

= (J+ describes the measurement noise

34

Extended Kalman Filter

Algorithm

1: Extended_Kalman_ filter(u:_1,>:_1,us, 2¢):
20 fy = glug, 1

3: Zt — Gt Zt—l G,}Jr -+ Rt
4: Kt = it H?(Ht it Hg’ —+ Qt)_l Ci <> Hy
D! pe = iy + Kt (2 —Zlfgt))

0: Zt — (I — Kt Ht) Zt

7 return [, i

KF vs. EKF

35

Extended Kalman Filter
Summary

= Extension of the Kalman filter
= One way to handle the non-linearities
» Performs local linearizations

= Works well in practice for moderate
non-linearities

= Large uncertainty leads to increased
approximation error error

36

Literature

Kalman Filter and EKF

= Thrun et al.: “"Probabilistic Robotics”,
Chapter 3

= Schon and Lindsten: “"Manipulating the
Multivariate Gaussian Density”

= Welch and Bishop: “"Kalman Filter
Tutorial”

37

