Robot Mapping

EKF SLAM

Cyrill Stachniss

Autonomous Intelligent Systems

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-or-egg problem

Definition of the SLAM Problem

Given

- The robot's controls $u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$
- Observations

 $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$

Wanted

- Map of the environment
- Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Three Main Paradigms

Particle filter

Graphbased

Bayes Filter

- Recursive filter with prediction and correction step
- Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

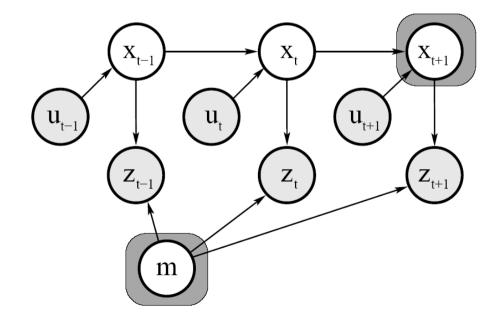
Correction

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

EKF for Online SLAM

 We consider here the Kalman filter as a solution to the online SLAM problem

$$p(x_t, m \mid z_{1:t}, u_{1:t})$$



Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: $\begin{vmatrix} 2: & \bar{\mu}_t = g(u_t, \mu_{t-1}) \\ 3: & \bar{\Sigma}_t = G_t \ \Sigma_{t-1} \ G_t^T + R_t \end{vmatrix}$ 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ 7: return μ_t, Σ_t

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}, \dots, \underbrace{m_{n,x}, m_{n,y}}_{\text{landmark 1}})^T$$

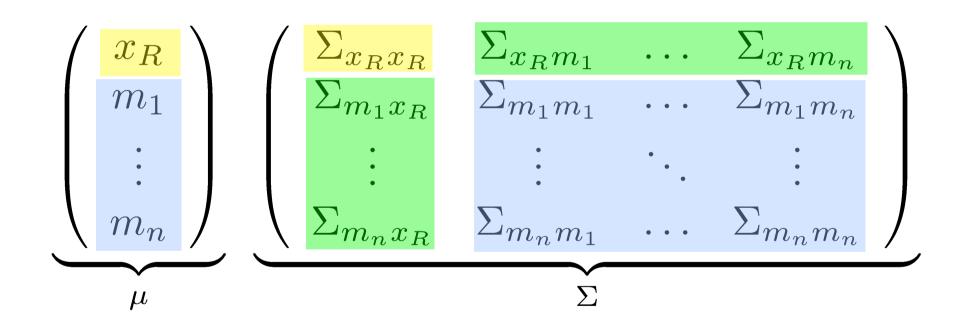
EKF SLAM: State Representation

- Map with *n* landmarks: (3+2*n*)-dimensional Gaussian
- Belief is represented by

(x	((σ_{xx}	σ_{xy}	$\sigma_{x heta}$	$\sigma_{xm_{1,x}}$	$\sigma_{xm_{1,y}}$	• • •	$\sigma_{xm_{n,x}}$	$\sigma_{xm_{n,y}}$
	y	C	σ_{yx}	σ_{yy}	$\sigma_{y heta}$	$\sigma_{ym_{1,x}}$	$\sigma_{ym_{1,y}}$	•••	$\sigma_{m_{n,x}}$	$\sigma_{m_{n,y}}$
	θ	C	$\sigma_{\theta x}$	$\sigma_{ heta y}$	$\sigma_{ heta heta}$	$\sigma_{ heta m_{1,x}}$	$\sigma_{ heta m_{1,y}}$	• • •	$\sigma_{ heta m_{n,x}}$	$\sigma_{ heta m_{n,y}}$
	$m_{1,x}$	σ_{n}	$n_{1,x}x$	$\sigma_{m_{1,x}y}$	$\sigma_{ heta}$	$\sigma_{m_{1,x}m_{1,x}}$	$\sigma_{m_{1,x}m_{1,y}}$	• • •	$\sigma_{m_{1,x}m_{n,x}}$	$\sigma_{m_{1,x}m_{n,y}}$
	$m_{1,y}$	σ_{r}	$n_{1,y}x$	$\sigma_{m_{1,y}y}$	$\sigma_{ heta}$	$\sigma_{m_{1,y}m_{1,x}}$	$\sigma_{m_{1,y}m_{1,y}}$		$\sigma_{m_{1,y}m_{n,x}}$	$\sigma_{m_{1,y}m_{n,y}}$
	• •		• •	• • •	•	• •	• •	•	• • •	• •
	$m_{n,x}$	σ_n	$n_{n,x}x$	$\sigma_{m_{n,x}y}$	$\sigma_{ heta}$	$\sigma_{m_{n,x}m_{1,x}}$	$\sigma_{m_{n,x}m_{1,y}}$	• • •	$\sigma_{m_{n,x}m_{n,x}}$	$\sigma_{m_{n,x}m_{n,y}}$
\int	$m_{n,y}$,						$\sigma_{m_{n,y}m_{1,y}}$		$\sigma_{m_{n,y}m_{n,x}}$	
	$\widetilde{\mu}$						Σ			

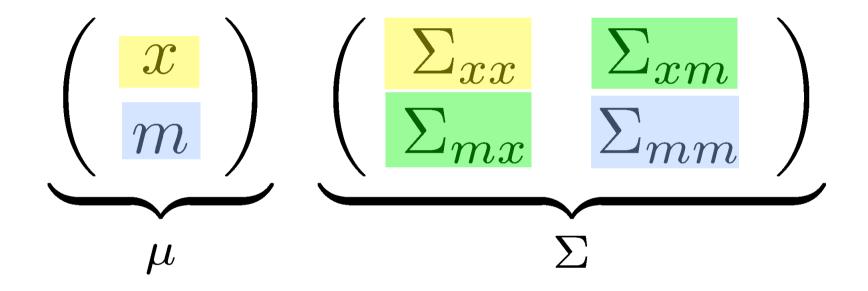
EKF SLAM: State Representation

More compactly



EKF SLAM: State Representation

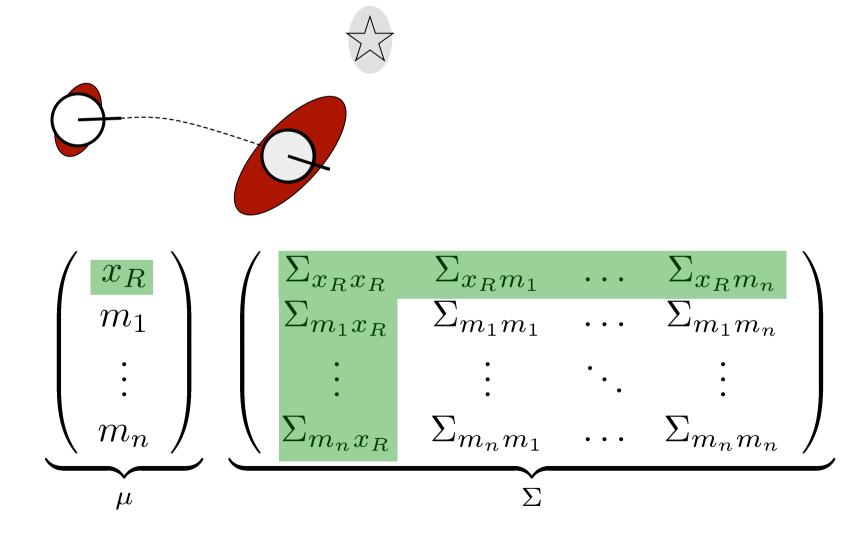
• Even more compactly (note: $x_R
ightarrow x$)



EKF SLAM: Filter Cycle

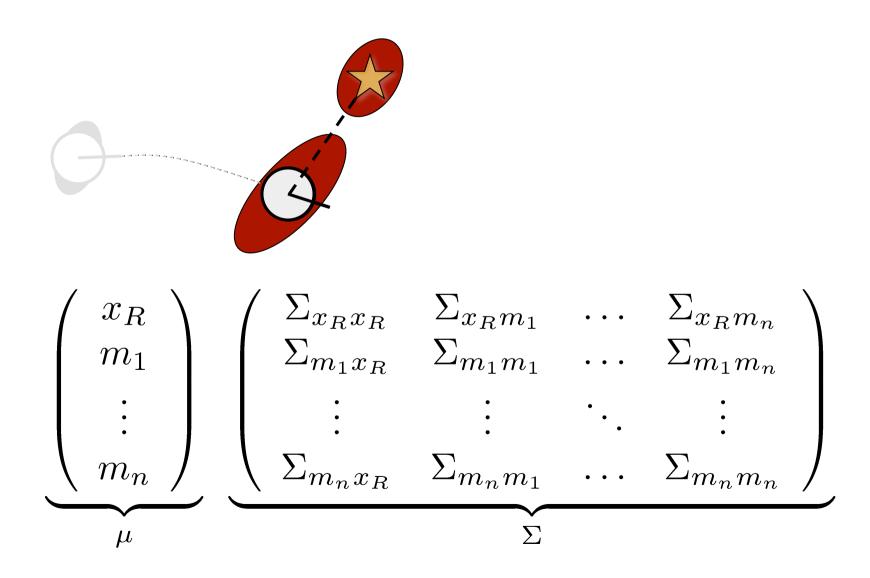
- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction



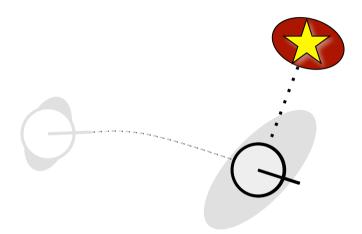
13

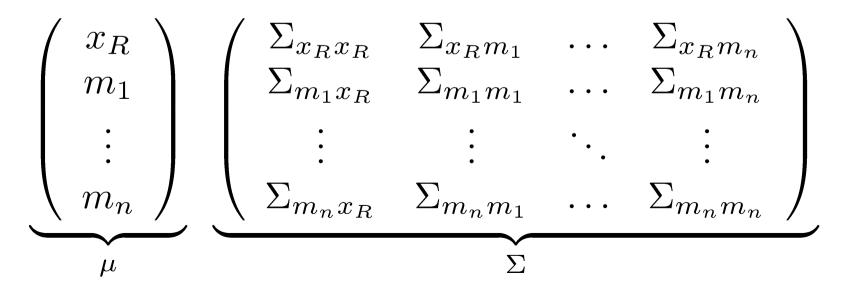
EKF SLAM: Measurement Prediction



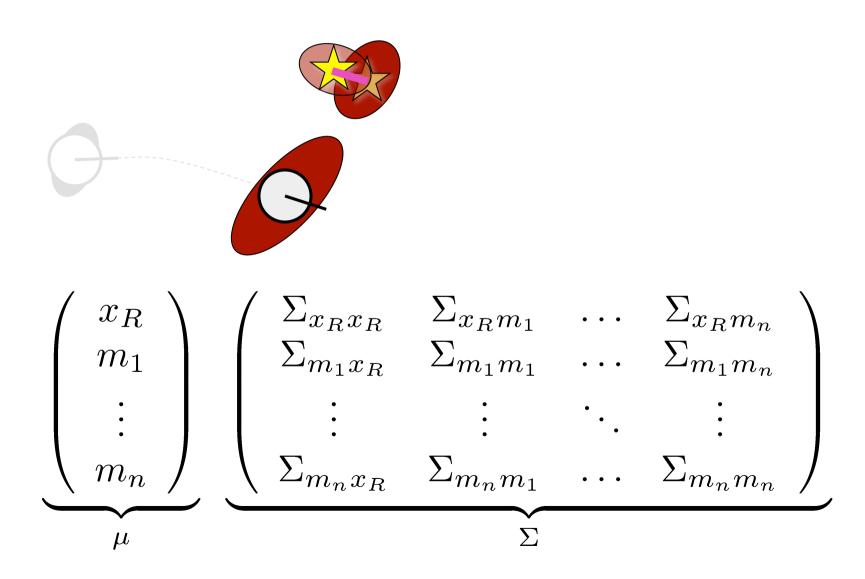
14

EKF SLAM: Obtained Measurement



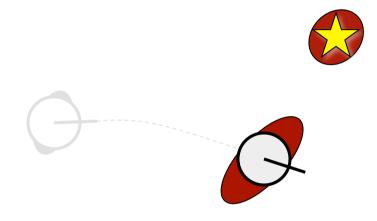


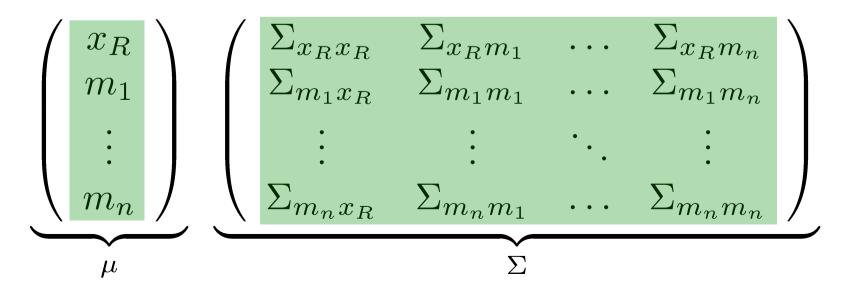
EKF SLAM: Data Association and Difference Between h(x) and z



16

EKF SLAM: Update Step





17

EKF SLAM: Concrete Example

Setup

- Robot moves in the 2D plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Initialization

- Robot starts in its own reference frame (all landmarks unknown)
- 2N+3 dimensions

$$\mu_{0} = (0 \ 0 \ 0 \ \dots \ 0)^{T}$$

$$\Sigma_{0} = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ \infty \ \dots \ 0 \\ \vdots \ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ 0 \ \dots \ \infty \end{pmatrix}$$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: $\begin{vmatrix} 2: & \bar{\mu}_t = g(u_t, \mu_{t-1}) \\ 3: & \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t \end{vmatrix}$ 4: $K_{t} = \bar{\Sigma}_{t} H_{t}^{T} (H_{t} \bar{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1}$ 5: $\mu_{t} = \bar{\mu}_{t} + K_{t} (z_{t} - h(\bar{\mu}_{t}))$ 6: $\Sigma_{t} = (I - K_{t} H_{t}) \bar{\Sigma}_{t}$ 7: return μ_{t}, Σ_{t}

Prediction Step (Motion)

- Goal: Update state space based on the robot's motion
- Robot motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t) \\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t) \\ \omega_t\Delta t \end{pmatrix}$$

$$g_{x,y,\theta}(u_t, (x, y, \theta)^T)$$

How to map that to the 2N+3 dim space?

Update the State Space

From the motion in the plane

$$\begin{pmatrix} x'\\ y'\\ \theta' \end{pmatrix} = \begin{pmatrix} x\\ y\\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\ \omega_t\Delta t \end{pmatrix}$$

to the 2N+3 dimensional space

$$\begin{pmatrix} x'\\y'\\\theta'\\\vdots \end{pmatrix} = \begin{pmatrix} x\\y\\\theta\\\vdots \end{pmatrix} + \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \dots 0\\0 & 1 & 0 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\0 & 0 & 1 & 0 \dots 0\\y_{N cols} \end{pmatrix}^{T} \begin{pmatrix} -\frac{v_{t}}{\omega_{t}}\sin\theta + \frac{v_{t}}{\omega_{t}}\sin(\theta + \omega_{t}\Delta t)\\\frac{v_{t}}{\omega_{t}}\cos\theta - \frac{v_{t}}{\omega_{t}}\cos(\theta + \omega_{t}\Delta t)\\\omega_{t}\Delta t \end{pmatrix}}_{G(u_{t}, x_{t})}$$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ -DONE 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ 7: return μ_t, Σ_t

Update Covariance

 The function g only affects the robot's motion and not the landmarks

> Jacobian of the motion (3x3) $G_t = \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix}$

Identity (2N x 2N)

$$G_t^x = \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$\begin{aligned} G_t^x &= \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right] \\ &= I + \frac{\partial}{\partial (x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \end{aligned}$$

$$\begin{aligned} G_t^x &= \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right] \\ &= I + \frac{\partial}{\partial (x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\ &= I + \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

$$\begin{split} G_t^x &= \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right] \\ &= I + \frac{\partial}{\partial (x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\ &= I + \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 1 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

This Leads to the Update

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ -Apply & DONE
3: $\Rightarrow \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $= \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0 \\ 0 & I \end{pmatrix} + R_t$
 $= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm} \\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: $\begin{vmatrix} 2: & \bar{\mu}_t = g(u_t, \mu_{t-1}) \text{ done} \\ 3: & \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t \text{ done} \end{vmatrix}$ $4: \quad K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ $5: \quad \mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ $6: \quad \Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ $7: \quad \text{return } \mu_t, \Sigma_t$

EKF SLAM:Prediction Step

$$\begin{aligned} \mathbf{EKF}_{-}\mathbf{SLAM}_{-}\mathbf{Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, R_t): \\ 2: \quad F_x &= \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \\ 3: \quad \bar{\mu}_t &= \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\ 4: \quad G_t &= I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x \\ 5: \quad \bar{\Sigma}_t &= G_t \Sigma_{t-1} G_t^T + \underbrace{F_x^T R_t^x F_x}_{R_t} \\ \end{aligned}$$

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ Apply & DONE 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ 7: return μ_t, Σ_t

EKF SLAM: Correction Step

- Known data association
- cⁱ_t = j: i-th measurement at time t
 observes the landmark with index j
- Initialize landmark if unobserved
- Compute the expected observation
- $\hfill \hfill \hfill$
- Proceed with computing the Kalman gain

Range-Bearing Observation

- Range-Bearing observation $z_t^i = (r_t^i, \phi_t^i)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

observed estimated location of robot's landmark j location

relative measurement

Expected Observation

 Compute expected observation according to the current estimate

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
$$q = \delta^T \delta$$
$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$
$$= h(\bar{\mu}_t)$$

Jacobian for the Observation

Based on

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

Compute the Jacobian

^{low}
$$H_t^i = \frac{\partial h(\bar{\mu_t})}{\partial \bar{\mu}_t}$$

low-dim space $(x, y, \theta, m_{j,x}, m_{j,y})$

Jacobian for the Observation

• **Based on**
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

$${}^{\text{low}}H_t^i = \frac{\partial h(\bar{\mu_t})}{\partial \bar{\mu}_t} = \begin{pmatrix} \frac{\partial \sqrt{q}}{\partial x} & \frac{\partial \sqrt{q}}{\partial y} & \dots \\ \frac{\partial \tan 2(\dots)}{\partial x} & \frac{\partial \tan 2(\dots)}{\partial y} & \dots \end{pmatrix}$$

The First Component

• **Based on**
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

We obtain (by applying the chain rule)

$$\frac{\partial \sqrt{q}}{\partial x} = \frac{1}{2} \frac{1}{\sqrt{q}} 2 \delta_x (-1)$$
$$= \frac{1}{q} (-\sqrt{q} \delta_x)$$

Jacobian for the Observation

- **Based on**
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

$${}^{\text{low}}H_t^i = \frac{\partial h(\bar{\mu_t})}{\partial \bar{\mu}_t} \\ = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Jacobian for the Observation

• Use the computed Jacobian

$${}^{\text{low}}H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Next Steps as Specified...

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ -DONE
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ DONE
4: $\Longrightarrow K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 1: $\begin{vmatrix} 2: & \bar{\mu}_t = g(u_t, \mu_{t-1}) \text{ done} \\ 3: & \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t \text{ done} \end{vmatrix}$ 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ Apply & DONE 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ Apply & DONE 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ Apply & DONE 7: \longrightarrow return μ_t, Σ_t

EKF SLAM – Correction (1/2)

$$\begin{aligned} \mathbf{EKF_SLAM_Correction} \\ 6: \quad Q_t &= \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix} \\ 7: \quad \text{for all observed features } z_t^i &= (r_t^i, \phi_t^i)^T \ \text{do} \\ 8: \quad j &= c_t^i \\ 9: \quad \text{if landmark } j \text{ never seen before} \\ 10: \quad \begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} &= \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix} \\ 11: \quad \text{endif} \\ 12: \quad \delta &= \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix} \\ 13: \quad q &= \delta^T \delta \\ 14: \quad \hat{z}_t^i &= \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix} \end{aligned}$$

EKF SLAM – Correction (2/2)

Implementation Notes

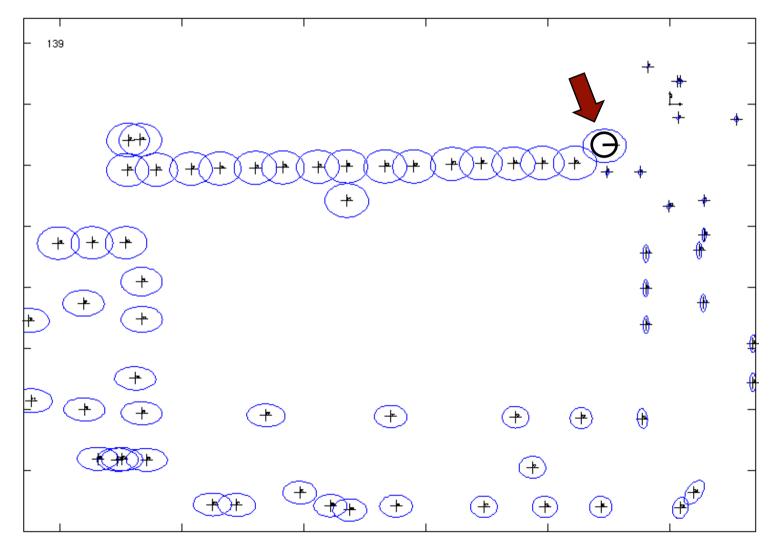
- Measurement update in a single step requires only one full belief update
- Always normalize the angular components
- You may not need to create the F matrices explicitly (e.g., in Octave)

Done!

Loop Closing

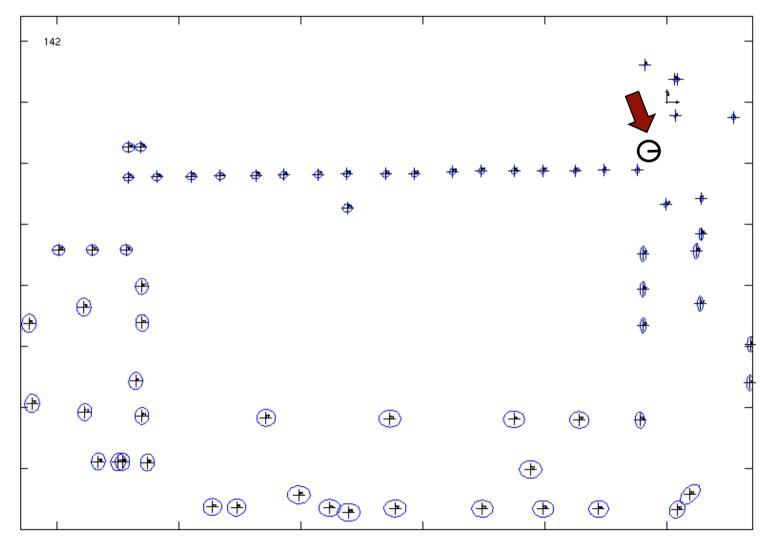
- Loop closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

Before the Loop Closure



Courtesy of K. Arras

After the Loop Closure

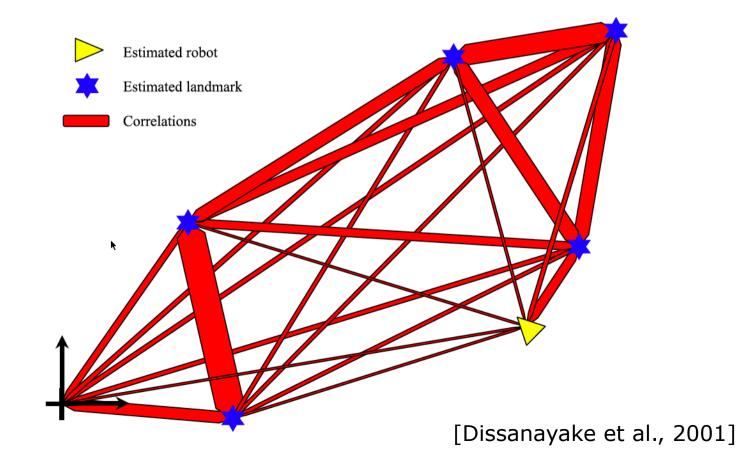


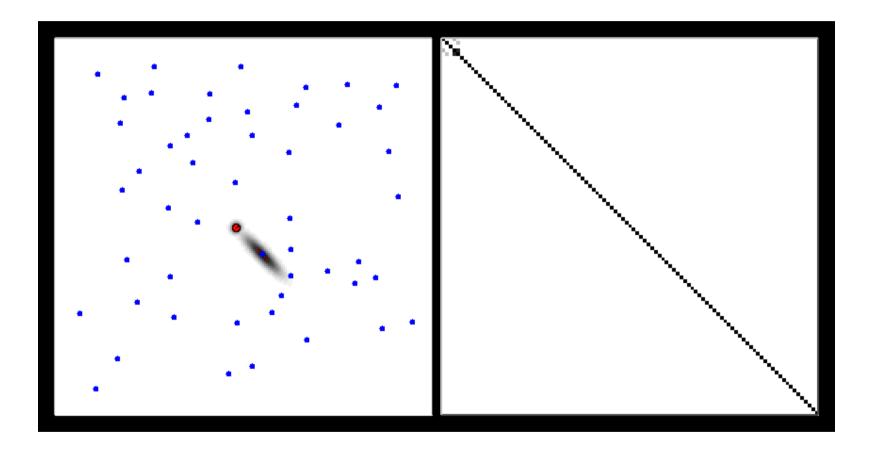
Courtesy of K. Arras

Loop Closures in SLAM

- Loop closing reduces the uncertainty in robot and landmark estimates
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Wrong loop closures lead to filter divergence

In the limit, the landmark estimates become fully correlated

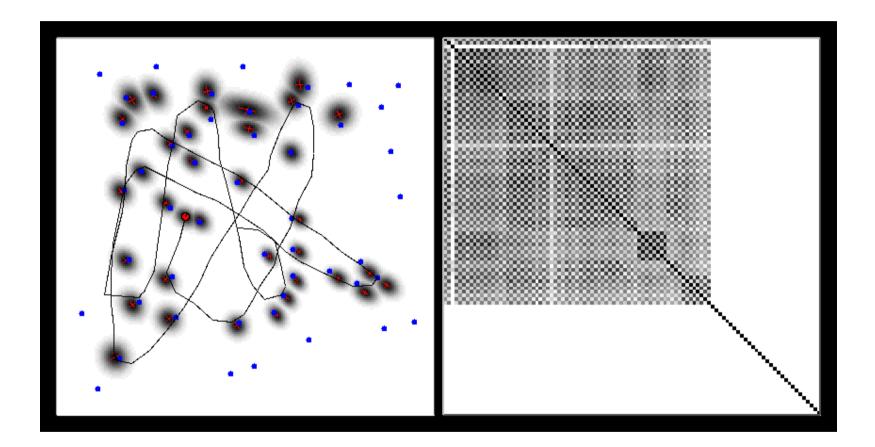




Мар

Correlation matrix

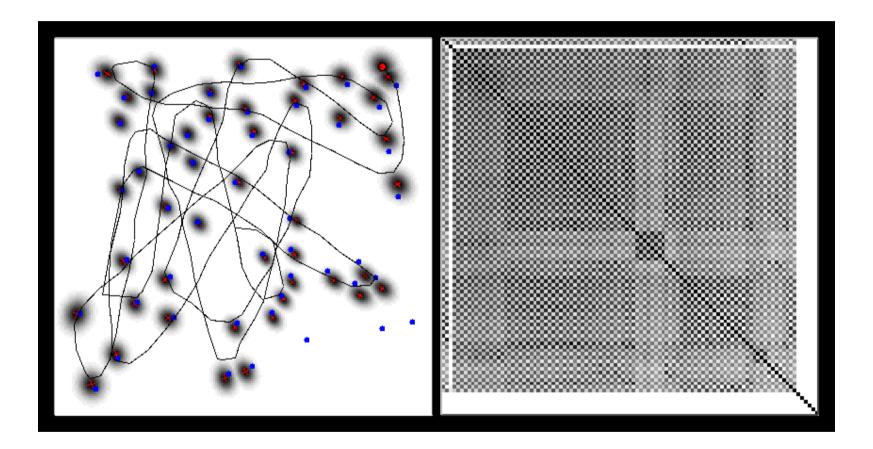
Courtesy of M. Montemerlo



Мар

Correlation matrix

Courtesy of M. Montemerlo



Мар

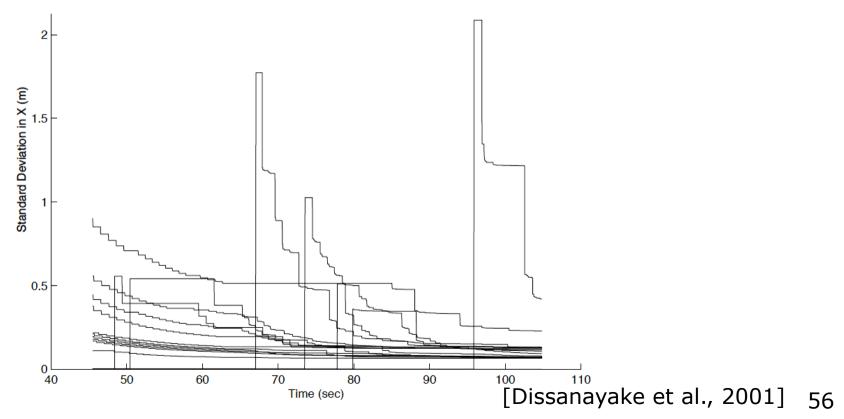
Correlation matrix

Courtesy of M. Montemerlo 54

- The correlation between the robot's pose and the landmarks cannot be ignored
- Assuming independence generates too optimistic estimates of the uncertainty

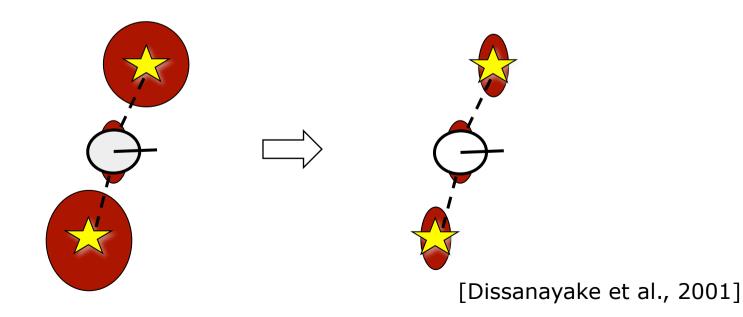
EKF SLAM Uncertainties

- The determinant of any sub-matrix of the map covariance matrix decreases monotonically
- New landmarks are initialized with maximum uncertainty



EKF SLAM in the Limit

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.

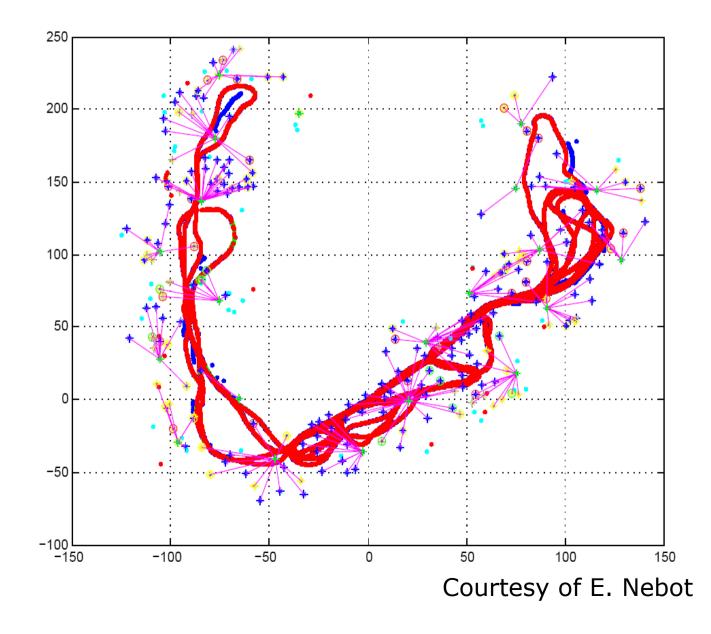


Example: Victoria Park Dataset

Courtesy of E. Nebot

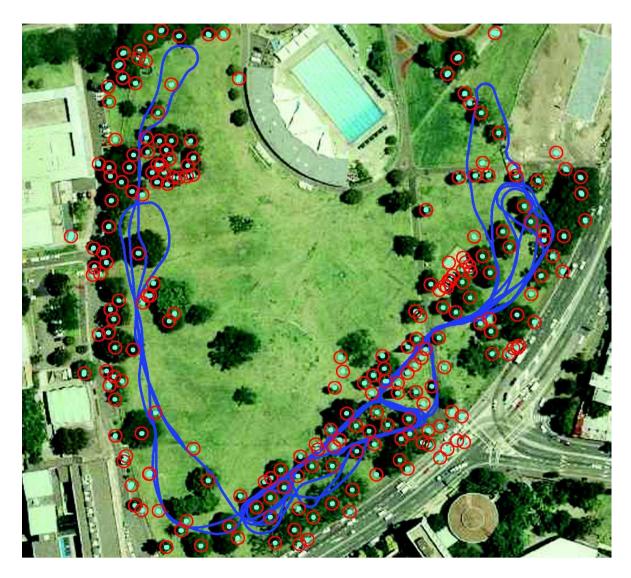
Victoria Park: Data Acquisition

Victoria Park: EKF Estimate



60

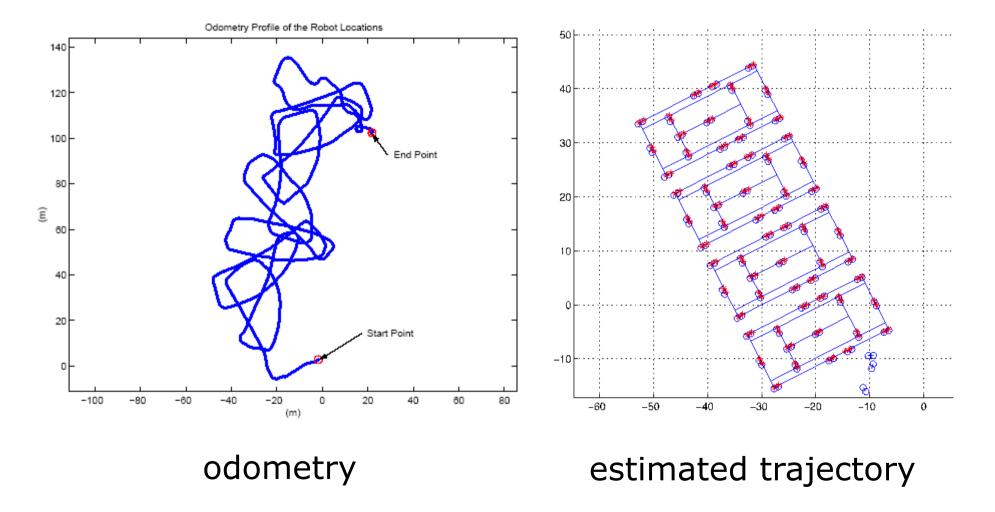
Victoria Park: Landmarks



Example: Tennis Court Dataset

Courtesy of J. Leonard and M. Walter

EKF SLAM on a Tennis Court



Courtesy of J. Leonard and M. Walter 63

EKF SLAM Complexity

- Cubic complexity depends only on the measurement dimensionality
- Cost per step: dominated by the number of landmarks: $O(n^2)$
- Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

EKF SLAM Summary

- The first SLAM solution
- Convergence proof for the linear Gaussian case
- Can diverge if non-linearities are large (and the reality is non-linear...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity

Literature

EKF SLAM

 Thrun et al.: "Probabilistic Robotics", Chapter 10