Robot Mapping

Unscented Kalman Filter

Cyrill Stachniss

KF, EKF and UKF
- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)

Linearization of the non-linear function through Taylor expansion

Unscented Transform

Compute a set of (so-called) sigma points
Unscented Transform

Transform each sigma point through the non-linear function

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma point has a weight
- Transform the point through the non-linear function
- Compute a Gaussian from weighted points
- Avoids to linearize around the mean as Taylor expansion (and EKF) does

Sigma Points

- How to choose the sigma points?
- How to set the weights?
Sigma Points Properties

- How to choose the sigma points?
- How to set the weights?
- Select $\chi^{[i]}$, $w^{[i]}$ so that:
 \[\sum_i w^{[i]} = 1 \]
 \[\mu = \sum_i w^{[i]} \chi^{[i]} \]
 \[\Sigma = \sum_i w^{[i]} (\chi^{[i]} - \mu)(\chi^{[i]} - \mu)^T \]
- There is no unique solution for $\chi^{[i]}, w^{[i]}$

Sigma Points

- Choosing the sigma points
 \[\chi^{[0]} = \mu \]
 First sigma point is the mean

Sigma Points

- Choosing the sigma points
 \[\chi^{[i]} = \mu + \left(\sqrt{(n + \lambda) \Sigma} \right)_i \quad \text{for } i = 1, \ldots, n \]
 \[\chi^{[i]} = \mu - \left(\sqrt{(n + \lambda) \Sigma} \right)_{i-n} \quad \text{for } i = n + 1, \ldots, 2n \]

Matrix Square Root

- Defined as S with $\Sigma = SS$
- Computed via diagonalization
 \[\Sigma = VDV^{-1} \]
 \[= \begin{pmatrix} d_{11} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & d_{nn} \end{pmatrix} V^{-1} \]
 \[= V \begin{pmatrix} \sqrt{d_{11}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} \begin{pmatrix} \sqrt{d_{11}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} V^{-1} \]
Matrix Square Root

Thus, we can define

\[S = V \begin{pmatrix} \sqrt{d_{11}} & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & \sqrt{d_{nn}} \end{pmatrix} V^{-1} \]

so that

\[SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma \]

Cholesky Matrix Square Root

Alternative definition of the matrix square root

\[L \text{ with } \Sigma = LL^T \]

Result of the Cholesky decomposition

Numerically stable solution

Often used in UKF implementations

\(L \) and \(\Sigma \) have the same Eigenvectors

Sigma Points and Eigenvectors

Sigma point can but do not have to lie on the main axes of \(\Sigma \)

\[\chi^{[i]} = \mu + \left(\sqrt{(n+\lambda) \Sigma} \right)_i \text{ for } i = 1, \ldots, n \]

\[\chi^{[i]} = \mu - \left(\sqrt{(n+\lambda) \Sigma} \right)_{i-n} \text{ for } i = n + 1, \ldots, 2n \]

Sigma Points Example
Sigma Point Weights

- Weight sigma points for computing the mean

\[
 w_m^{[0]} = \frac{\lambda}{n + \lambda}
\]

\[
 w_c^{[0]} = w_m^{[0]} + (1 - \alpha^2 + \beta)
\]

\[
 w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n + \lambda)} \quad \text{for } i = 1, \ldots, 2n
\]

for computing the covariance

Recover the Gaussian

- Compute Gaussian from weighted and transformed points

\[
 \mu' = \sum_{i=0}^{2n} w_m^{[i]} \, g(\chi^{[i]})
\]

\[
 \Sigma' = \sum_{i=0}^{2n} w_c^{[i]} \, (g(\chi^{[i]}) - \mu')(g(\chi^{[i]}) - \mu')^T
\]

Example

Examples

\[
g((x, y)^T) = \begin{pmatrix} x + 1 \\ y + 1 \end{pmatrix}^T
\]

\[
g((x, y)^T) = \begin{pmatrix} 1 + x + \sin(2x) + \cos(y) \\ 2 + 0.2y \end{pmatrix}^T
\]
Unscented Transform Summary

- **Sigma points**

 \[
 \chi^{[0]} = \mu \\
 \chi^{[i]} = \mu + \left(\sqrt{(n + \lambda) \Sigma} \right)_i \quad \text{for } i = 1, \ldots, n \\
 \chi^{[i]} = \mu - \left(\sqrt{(n + \lambda) \Sigma} \right)_{i-n} \quad \text{for } i = n + 1, \ldots, 2n
 \]

- **Weights**

 \[
 w^{[0]}_m = \frac{\lambda}{n+\lambda} \\
 w^{[0]}_c = w^{[0]}_m + (1 - \alpha^2 + \beta) \\
 w^{[i]}_m = w^{[i]}_c = \frac{1}{2(n+\lambda)} \quad \text{for } i = 1, \ldots, 2n
 \]

UT Parameters

- Free parameters as there is no unique solution
- Scaled Unscented Transform suggests

\[
\kappa \geq 0 \quad \text{Influence how far the sigma points are away from the mean} \\
\alpha \in (0, 1] \\
\lambda = \alpha^2(n + \kappa) - n \\
\beta = 2 \quad \text{Optimal choice for Gaussians}
\]
EKF Algorithm

1: Extended Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: $\tilde{\mu}_t = g(u_t, \mu_{t-1})$
3: $\tilde{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
4: $K_t = \tilde{\Sigma}_t H_t^T (H_t \tilde{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \tilde{\mu}_t + K_t(z_t - h(\tilde{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \tilde{\Sigma}_t$
7: return μ_t, Σ_t

UKF Algorithm – Prediction

1: Unscented Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: $\chi_{t-1} = (\mu_{t-1} + \sqrt{(n + \lambda)\Sigma_{t-1}}, \mu_{t-1} - \sqrt{(n + \lambda)\Sigma_{t-1}})$
3: $\chi_t^* = g(u_t, \chi_{t-1})$
4: $\tilde{\mu}_t = \sum_{i=0}^{2n} w_i^{[i]} \chi_t^{*, [i]}$
5: $\tilde{\Sigma}_t = \sum_{i=0}^{2n} w_i^{[i]} (\chi_t^{*, [i]} - \tilde{\mu}_t)(\chi_t^{*, [i]} - \tilde{\mu}_t)^T + R_t$

EKF to UKF – Prediction

1: Extended Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: $\tilde{\mu}_t = $ replace this by sigma point propagation of the motion
3: $\tilde{\Sigma}_t = $ propagation of the motion
4: $K_t = \tilde{\Sigma}_t H_t^T (H_t \tilde{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \tilde{\mu}_t + K_t(z_t - h(\tilde{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \tilde{\Sigma}_t$
7: return μ_t, Σ_t

EKF to UKF – Correction

1: Extended Kalman filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
2: $\tilde{\mu}_t = $ replace this by sigma point propagation for the motion
3: $\tilde{\Sigma}_t = $ propagation of the motion
4: $\tilde{\mu}_t = \tilde{\mu}_t + K_t(z_t - \bar{z}_t)$
5: $\Sigma_t = \tilde{\Sigma}_t - K_t S_t K_t^T$
6: return μ_t, Σ_t
UKF Algorithm – Correction (1)

6: \(\dot{X}_t = (\dot{\mu}_t, \dot{\mu}_t + \sqrt{(n + \lambda)}\Sigma_t) \quad \dot{\mu}_t - \sqrt{(n + \lambda)}\Sigma_t \)
7: \(\dot{Z}_t = h(\dot{X}_t) \)
8: \(\dot{z}_t = \sum_{i=0}^{2n} w_m[i] \dot{Z}_t[i] \)
9: \(S_t = \sum_{i=0}^{2n} w_m[i] (\dot{Z}_t[i] - \dot{z}_t)(\dot{Z}_t[i] - \dot{z}_t)^T + Q_t \)
10: \(\Sigma_t^{x,x} = \sum_{i=0}^{2n} w_m[i] (X_t[i] - \tilde{\mu}_t)(\tilde{Z}_t[i] - \tilde{z}_t)^T \)
11: \(K_t = \Sigma_t^{x,x} S_t^{-1} \)

UKF Algorithm – Correction (2)

6: \(\dot{X}_t = (\dot{\mu}_t, \dot{\mu}_t + \sqrt{(n + \lambda)}\Sigma_t) \quad \dot{\mu}_t - \sqrt{(n + \lambda)}\Sigma_t \)
7: \(\dot{Z}_t = h(\dot{X}_t) \)
8: \(\dot{z}_t = \sum_{i=0}^{2n} w_m[i] \dot{Z}_t[i] \)
9: \(S_t = \sum_{i=0}^{2n} w_m[i] (\dot{Z}_t[i] - \dot{z}_t)(\dot{Z}_t[i] - \dot{z}_t)^T + Q_t \)
10: \(\Sigma_t^{x,x} = \sum_{i=0}^{2n} w_m[i] (X_t[i] - \tilde{\mu}_t)(\tilde{Z}_t[i] - \tilde{z}_t)^T \)
11: \(K_t = \Sigma_t^{x,x} S_t^{-1} \)
12: \(\mu_t = \tilde{\mu}_t + K_t(\tilde{z}_t - \tilde{z}_t) \)
13: \(\Sigma_t = \Sigma_t - K_t S_t K_t^T \)
14: return \(\mu_t, \Sigma_t \)
From EKF to UKF – Computing the Covariance

\[
\Sigma_t = (I - K_t H_t) \tilde{\Sigma}_t \\
= \tilde{\Sigma}_t - K_t H_t \tilde{\Sigma}_t \\
= \tilde{\Sigma}_t - K_t (\tilde{\Sigma}_{x,z})^T \\
= \tilde{\Sigma}_t - K_t (\tilde{\Sigma}_{x,z} S_t^{-1} S_t)^T \\
= \tilde{\Sigma}_t - K_t (K_t S_t)^T \\
= \tilde{\Sigma}_t - K_t S_t^T K_t^T \\
= \tilde{\Sigma}_t - K_t S_t K_t^T
\]

UKF vs. EKF (Small Covariance)

UKF vs. EKF – Banana Shape

EKF approximation

UKF approximation
UT/UKF Summary

- Unscented transforms as an alternative to linearization
- UT is a better approximation than Taylor expansion
- UT uses sigma point propagation
- Free parameters in UT
- UKF uses the UT in the prediction and correction step

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often “somewhat small”
- No Jacobians needed for the UKF
- Same complexity class
- Slightly slower than the EKF
- Still restricted to Gaussian distributions

Literature

Unscented Transform and UKF

- Thrun et al.: “Probabilistic Robotics”, Chapter 3.4
- “A New Extension of the Kalman Filter to Nonlinear Systems” by Julier and Uhlmann, 1995
- “Dynamische Zustandsschätzung” by Fränken, 2006, pages 31-34