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Robot Mapping  

Extended Information Filter 

Cyrill Stachniss 
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Gaussians 

!  Gaussian described by moments 
 

1D 
3D 
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Canonical Parameterization 

!  Alternative representation for 
Gaussians 

!  Described by information matrix  
and information vector 
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Complete Parameterizations 

  
 moments  canonical 
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Towards the Information Form 
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Towards the Information Form 
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Dual Representation 

  
 

moments parameterization 

canonical parameterization 
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Marginalization and Conditioning 

Courtesy: R. Eustice 

trivial 
expensive 
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From the Kalman Filter to the 
Information Filter 
!  Two parameterization for Gaussian 
!  Same expressiveness 
!  Marginalization and conditioning have 

different complexities 
!  We learned about Gaussian filtering 

with the Kalman filter in Chapter 4 
!  Kalman filtering in information from is 

called information filtering  
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Kalman Filter Algorithm 
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Prediction Step (1) 

!  Transform 
!  Using 
!  Leads to 
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Prediction Step (2) 

!  Transform 
!  Using 
!  Leads to 
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Information Filter Algorithm 
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Correction Step  

!  Use the Bayes filter measurement 
update and replace the components 
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Correction Step  

!  Use the Bayes filter measurement 
update and replace the components 
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Correction Step  

!  This results in a simple update rule 
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Information Filter Algorithm 
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Prediction and Correction  

!  Prediction 

!  Correction 

    Discuss differences to the KF! 
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Complexity 

!  Kalman filter 
!  Efficient prediction step: 
! Costly correction step: 

!  Information filter 
! Costly prediction step: 
!  Efficient correction step: 

!  Transformation between both 
parameterizations is costly: 

 *Potentially faster, especially for SLAM; depending on type of   
   controls and observations 
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Extended Information Filter 

!  As the Kalman filter, the information 
filter suffers from the linear models 

!  The extended information filter (EIF) 
uses a similar trick as the EKF 

!  Linearization of the motion and 
observation function 
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Linearization of the EIF 

!  Taylor approximation analog to the 
EKF (see Chapter 3) 

!  with the Jacobians      and  
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Prediction: From EKF of EIF 

!  Substitution of the moments brings us 
from the EKF 

!  to the EIF 
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Prediction: From EKF of EIF 
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Correction Step of the EIF 

!  As from the KF to IF transition, use 
substitute the moments in the 
measurement update  

!  This leads to 
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Extended Information Filter  
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EIF vs. EKF 

!  The EIF is the EKF in information form 
!  Complexities of the prediction and 

correction steps differ 
!  Same expressiveness than the EKF 
!  Unscented transform can also be used 
!  Reported to be numerically more 

stable than the EKF 
!  In practice, the EKF is more popular 

than the EIF 
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Summary 

!  Gaussians can also be represented 
using the canonical parameterization 

!  Allow for filtering in information form 
!  Information filter vs. Kalman filter 
!  KF: efficient prediction, slow correction 
!  IF: slow prediction, efficient correction 
!  The application determines which filter 

is the better choice! 
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