Robot Mapping

Sparse Extended Information Filter for SLAM

Cyrill Stachniss

1

3

Reminder: Parameterizations for the Gaussian Distribution

moments

$$\Sigma = \Omega^{-1}$$

$$\Sigma = \Omega^{-1}$$
$$\mu = \Omega^{-1}\xi$$

covariance matrix mean vector

canonical

$$\Omega = \Sigma^{-1}$$

$$\Omega = \Sigma^{-1}$$
$$\xi = \Sigma^{-1}\mu$$

information matrix information vector

2

Motivation

Gaussian estimate (map & pose)

normalized covariance matrix

normalized information matrix

Motivation

normalized information matrix

Most Features Have Only a Small Number of Strong Links

5

7

Create Sparsity

- "Set" most links to zero/avoid fill-in
- \bullet Exploit sparseness of Ω in the computations
- sparse = finite number of non-zero off-diagonals, independent of the matrix size

Information Matrix

- Information matrix can be interpreted as a graph of constraints/links between nodes (variables)
- Can be interpreted as a MRF
- Missing links indicate conditional independence of the random variables
- Ω_{ij} tells us the strength of a link
- Larger values for nearby features
- Most off-diagonal elements in the information are close to 0 (but ≠ 0)

6

Effect of Measurement Update on the Information Matrix

before any observations

Effect of Measurement Update on the Information Matrix

robot observes landmark 1

9

Effect of Measurement Update on the Information Matrix

 Adds information between the robot's pose and the observed feature

Effect of Measurement Update on the Information Matrix

robot observes landmark 2

10

Effect of Motion Update on the Information Matrix

before the robot's movement

12

Effect of Motion Update on the Information Matrix

after the robot's movement

13

15

Effect of Motion Update on the Information Matrix

- Weakens the links between the robot's pose and the landmarks
- Add links between landmarks

Effect of Motion Update on the Information Matrix

effect of the robot's movement

14

Sparsification

before sparsification

Sparsification

before sparsification

17

Sparsification

removal of the link between m_1 and x_{t+1}

18

Sparsification

 $\stackrel{\bigstar}{m}_3$

19

effect of the sparsification

Sparsification

- Sparsification means "ignoring" links (assuming conditional independence)
- Here: links between the robot's pose and some of the features

Active and Passive Landmarks

Key element of SEIF SLAM to obtain an efficient algorithm

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

21

Sparsification in Every Step

 SEIF SLAM conducts a sparsification steps in each iteration

Effect:

- The robot's pose is linked to the active landmarks only
- Landmarks have only links to nearby landmarks (landmarks that have been active at the same time)

Active vs. Passive Landmarks

22

Key Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Sparsification

Four Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Update of the state estimate
- 4. Sparsification

The mean is needed to apply the motion update, for computing an expected measurement and for sparsification

25

Four Steps of SEIF SLAM

SEIF_SLAM($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t$):

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- 2: $\xi_t, \Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t)$
- 3: $\mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t, \Omega_t, \bar{\mu}_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Note: we maintain ξ_t, Ω_t, μ_t

Four Steps of SEIF SLAM

SEIF_SLAM($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t$):

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- 2: $\xi_t, \Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t)$
- 3: $\mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t, \Omega_t, \bar{\mu}_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

The corrected mean μ_t is estimated after the measurement update of the canonical parameters ξ_t , Ω_t

Four Steps of SEIF SLAM

SEIF_SLAM($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t$):

- $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- $\xi_t, \Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t)$
- 3: $\mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t, \Omega_t, \bar{\mu}_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Matrix Inversion Lemma

- Before we start, let us re-visit the matrix inversion lemma
- For any invertible quadratic matrices R and Q and any matrix P, the following holds:

$$(R + P Q P^{T})^{-1} =$$

$$R^{-1} - R^{-1} P (Q^{-1} + P^{T} R^{-1} P)^{-1} P^{T} R^{-1}$$

29

31

SEIF SLAM - Prediction Step

- Goal: Compute $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$ from motion and the previous estimate $\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}$
- Efficiency by exploiting sparseness of the information matrix

30

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R.}$$

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

$$3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \left(\begin{array}{c} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \text{copy } \$ \text{ paste} \end{array} \right)$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

$$3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \left(\begin{array}{c} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \text{copy } \end{array} \right) \text{ paste}$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

let's begin with computing the information matrix... 33

SEIF – Prediction Step (1/3)

Algorithm SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

2:
$$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & \underbrace{0 \cdots 0}_{2N} \end{pmatrix}$$

3:
$$\delta = \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$
4:
$$\Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

4:
$$\Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

34

36

Compute the Information Matrix

35

Computing the information matrix

$$\bar{\Omega}_{t} = \bar{\Sigma}_{t}^{-1}
= \left[G_{t} \Omega_{t-1}^{-1} G_{t}^{T} + R_{t} \right]^{-1}
= \left[\Phi_{t}^{-1} + R_{t} \right]^{-1}$$

• with the term Φ_t defined as

$$\Phi_t = \left[G_t \, \Omega_{t-1}^{-1} \, G_t^T \right]^{-1}
= \left[G_t^T \right]^{-1} \, \Omega_{t-1} \, G_t^{-1}$$

Compute the Information Matrix

We can expand the noise matrix R

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$$
$$= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1}$$

Compute the Information Matrix

Apply the matrix inversion lemma

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1} \\
= \Phi_{t} - \Phi_{t} F_{x}^{T} \left(R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T}\right)^{-1} F_{x} \Phi_{t}$$
3x3 matrix

37

39

Compute the Information Matrix

Apply the matrix inversion lemma

• Constant complexity if Φ_t is sparse!

Compute the Information Matrix

Apply the matrix inversion lemma

$$\begin{array}{ll} \bar{\Omega}_t &=& \left[\Phi_t^{-1} + R_t\right]^{-1} \\ &=& \left[\Phi_t^{-1} + F_x^T \; R_t^x \; F_x\right]^{-1} \\ &=& \Phi_t - \Phi_t \; F_x^T (R_t^{x-1} + F_x \; \Phi_t \; F_x^T)^{-1} \; F_x \; \Phi_t \\ & & & & & & \\ \hline \textbf{3x3 matrix} & & & \\ & & & & & \\ \textbf{Zero except} & & & & \textbf{Zero except} \\ \textbf{3x3 block} & & & \textbf{3x3 block} \end{array}$$

Compute the Information Matrix

This can be written as

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$$

$$= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1}$$

$$= \Phi_t - \underbrace{\Phi_t F_x^T (R_t^{x-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t}_{\kappa_t}$$

$$= \Phi_t - \kappa_t$$

• Question: Can we compute Φ_t efficiently $(\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1})$?

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if Ω_{t-1} is sparse

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$
$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

3x3 identity 2Nx2N identity

41

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

holds for all block matrices where the off-diagonal blocks are zero

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

$$= I_{3+2N} + \begin{pmatrix} (\Delta + I_3)^{-1} - I_3 & 0 \\ 0 & 0 \end{pmatrix}$$

Note: 3x3 matrix

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if Ω_{t-1} is sparse

$$G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$$

$$= \begin{pmatrix} \Delta + I_{3} & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_{3})^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

$$= I_{3+2N} + \begin{pmatrix} (\Delta + I_{3})^{-1} - I_{3} & 0 \\ 0 & 0 \end{pmatrix}$$

$$= I + \underbrace{F_{x}^{T} [(I + \Delta)^{-1} - I] F_{x}}_{\Psi_{t}}$$

$$= I + \Psi_{t}$$

 $\mathbf{I}_t = [\mathbf{G}_t]$

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

We have

$$G_t^{-1} = I + \Psi_t$$
 $[G_t^T]^{-1} = I + \Psi_t^T$

with

$$\Psi_t = F_x^T \ \underline{[(I+\Delta)^{-1}-I]} \ F_x$$
3x3 matrix

- Ψ_t is zero except of a 3x3 block
- G_t^{-1} is an identity except of a 3x3 block

46

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

Given that:

- G_t^{-1} and $[G_t^T]^{-1}$ are identity matrices except of a 3x3 block
- The information matrix is sparse
- This implies that

$$\Phi_t = [G_t^T]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

can be computed in constant time

Constant Time Computation of Φ_t

• Given Ω_{t-1} is sparse, the constant time update can be seen by

$$\Phi_{t} = [G_{t}^{T}]^{-1} \Omega_{t-1} G_{t}^{-1}
= (I + \Psi_{t}^{T}) \Omega_{t-1} (I + \Psi_{t})
= \Omega_{t-1} + \underbrace{\Psi_{t}^{T} \Omega_{t-1} + \Omega_{t-1} \Psi_{t} + \Psi_{t}^{T} \Omega_{t-1} \Psi_{t}}_{\lambda_{t}}
= \Omega_{t-1} + \lambda_{t}$$

all elements zero except a constant number of entries

Prediction Step in Brief

- Compute Ψ_t
- Compute λ_t using Ψ_t
- Compute Φ_t using λ_t
- Compute κ_t using Φ_t
- Compute $\bar{\Omega}_t$ using Φ_t and κ_t

49

Compute the Mean

The mean is computed as in the EKF

$$\bar{\mu}_t = \mu_{t-1} + F_x^T \delta$$

Reminder (from SEIF motion update)

2:
$$F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & \underbrace{0 \cdots 0}_{2N} \end{pmatrix}$$
3:
$$\delta = \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix}$$

SEIF - Prediction Step (2/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$): 2: $F_x = \cdots$ 3: $\delta = \cdots$ 4: $\Delta = \cdots$ 5: $\Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x$ 6: $\lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t$ 7: $\Phi_t = \Omega_{t-1} + \lambda_t$ 8: $\kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t$ 9: $\bar{\Omega}_t = \Phi_t - \kappa_t$

Information matrix is computed, now do the same for the information vector and the mean

50

Compute the Information Vector

We obtain the information vector by

$$\begin{split} \bar{\xi}_t & \\ &= \bar{\Omega}_t \; (\mu_{t-1} + F_x^T \; \delta_t) \\ &= \bar{\Omega}_t \; (\Omega_{t-1}^{-1} \; \xi_{t-1} + F_x^T \; \delta_t) \end{split}$$

Compute the Information Vector

We obtain the information vector by

$$\bar{\xi}_{t}
= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

Compute the Information Vector

We obtain the information vector by

$$\begin{split} \bar{\xi}_{t} &= \bar{\Omega}_{t} \; (\mu_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; (\Omega_{t-1}^{-1} \; \xi_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0}) \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \end{split}$$

54

Compute the Information Vector

We obtain the information vector by

$$\begin{split} \bar{\xi}_t &= \bar{\Omega}_t \; (\mu_{t-1} + F_x^T \; \delta_t) \\ &= \bar{\Omega}_t \; (\Omega_{t-1}^{-1} \; \xi_{t-1} + F_x^T \; \delta_t) \\ &= \bar{\Omega}_t \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_t \; F_x^T \; \delta_t \\ &= (\bar{\Omega}_t \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t-1} + \Omega_{t-1}) \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_t \; F_x^T \; \delta_t \\ &= (\bar{\Omega}_t \underbrace{-\Phi_t + \Phi_t - \Omega_{t-1}}_{=0}) \; \underbrace{\Omega_{t-1}^{-1} \; \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \; \Omega_{t-1}^{-1}}_{=I} \; \xi_{t-1} + \bar{\Omega}_t \; F_x^T \; \delta_t \end{split}$$

Compute the Information Vector

We obtain the information vector by

$$\bar{\xi}_{t}
= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}
= (\bar{\Omega}_{t} -\Phi_{t} + \Phi_{t} -\Omega_{t-1} + \Omega_{t-1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}
= (\bar{\Omega}_{t} -\Phi_{t} + \Phi_{t} -\Omega_{t-1}) \Omega_{t-1}^{-1} \xi_{t-1} + \Omega_{t-1} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}
= (\bar{\Omega}_{t} - \Phi_{t} + \Phi_{t} - \Omega_{t-1}) \Omega_{t-1}^{-1} \xi_{t-1} + \Omega_{t-1} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}
= \xi_{t-1} + (\lambda_{t} - \kappa_{t}) \mu_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

55

SEIF - Prediction Step (3/3)

```
SEIF_motion_update(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t):
2: F_r = \cdots
3: \delta = \cdots
4 \cdot \Lambda = \cdots
5: \Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x
6: \lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t
7: \Phi_t = \Omega_{t-1} + \lambda_t
8: \kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t
9: \bar{\Omega}_t = \Phi_t - \kappa_t
10: \bar{\xi}_t = \xi_{t-1} + (\lambda_t - \kappa_t) \mu_{t-1} + \bar{\Omega}_t F_x^T \delta_t
11: \bar{\mu}_t = \mu_{t-1} + F_x^T \delta
12: return \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t
```

Four Steps of SEIF SLAM

SEIF_SLAM($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t$):

- $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, \mathbf{DONE})$
- $\xi_t, \Omega_t = \mathbf{SEIF}_{\mathbf{measurement_update}}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t)$
- $\mu_t = \mathbf{SEIF_update_state_estimate}(\xi_t, \Omega_t, \bar{\mu}_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

58

SEIF - Measurement (1/2)

```
SEIF_measurement_update(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)
```

1:
$$Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix}$$

- 2: for all observed features $z_t^i = (r_t^i, \phi_t^i)^T$ do
- $j = c_t^i$ (data association)
- if landmark j never seen before

5:
$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

7:
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

8: $q = \delta^T \delta$

$$\hat{z}_t^i = \left(egin{array}{c} \sqrt{q} \ \mathrm{atan2}(\delta_u, \delta_x) - ar{\mu}_{t, heta} \end{array}
ight)$$

identical to the EKF SLAM

SEIF - Measurement (2/2)

10:
$$H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & 0 \dots 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y & 0 \dots 0 \\ \delta_y & -\delta_x & -q & \underbrace{0 \dots 0}_{2j-2} & -\delta_y & +\delta_x & \underbrace{0 \dots 0}_{2N-2j} \end{pmatrix}$$

57

12: $\xi_t = \bar{\xi}_t + \sum_i H_t^{iT} Q_t^{-1} [z_t^i - \hat{z}_t^i + H_t^i \mu_t]$

13: $\Omega_t = \bar{\Omega}_t + \sum_i H_t^{iT} Q_t^{-1} H_t^i$

14: return ξ_t, Ω_t

Difference to EKF (but as in EIF):

$$\xi_t = \bar{\xi}_t + \sum_i H_t^{iT} Q_t^{-1} [z_t^i - \hat{z}_t^i + H_t^i \mu_t]$$

$$\Omega_t = \bar{\Omega}_t + \sum_i H_t^{iT} Q_t^{-1} H_t^i$$

Four Steps of SEIF SLAM

```
\begin{aligned} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t) : \\ 1: \quad & \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\mathbf{DONE}) \\ 2: \quad & \xi_t, \Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \ \mathbf{DONE} \\ 3: \quad & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \\ 4: \quad & \tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: \quad & return \ \tilde{\xi}_t, \tilde{\Omega}_t, \mu_t \end{aligned}
```

Recovering the Mean

The mean is needed for the

- linearized motion model (pose)
- linearized measurement model (pose and visible landmarks)
- sparsification step (pose and subset of the landmarks)

61

Recovering the Mean

 In the motion update step, we can compute the predicted mean easily

```
SEIF_motion_update(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t):
2-10:....
11: \underline{\bar{\mu}_t = \mu_{t-1} + F_x^T \delta}
12: return \ \xi_t, \Omega_t, \bar{\mu}_t
```

Recovering the Mean

- Computing the corrected mean, however, cannot be done as easy
- Computing the mean from the information vector is costly:

$$\mu = \Omega^{-1}\xi$$

 Thus, SEIF SLAM approximates the computation for the corrected mean

Approximation of the Mean

- Compute a few dimensions of the mean in an approximated way
- Idea: Treat that as an optimization problem and seek to find

$$\hat{\mu} = \underset{\mu}{\operatorname{argmax}} p(\mu)$$

$$= \underset{\mu}{\operatorname{argmax}} \exp\left(-\frac{1}{2}\mu^{T}\Omega\mu + \xi^{T}\mu\right)$$

 Seeks to find the value that maximize the probability density function

65

Approximation of the Mean

- Derive function
- Set first derivative to zero
- Solve equation(s)
- Iterate
- Can be done effectively given that only a few dimensions of μ are needed (robot's pose and active landmarks)

no further details here...

66

Four Steps of SEIF SLAM

```
\begin{array}{lll} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t) : \\ 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\boldsymbol{\mathcal{D}}) \mathbf{NE} \\ 2: & \xi_t,\Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \ \mathbf{DONE} \\ 3: & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \ \mathbf{DONE} \\ 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: & return\ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}
```

Sparsification

- In order to perform all previous computations efficiently, we assumed a sparse information matrix
- Sparsification step ensures that
- Question: what does sparsifying the information matrix mean?

Sparsification

- Question: what does sparsifying the information matrix mean?
- It means "ignoring" some direct links
- Assuming conditional independence

Sparsification in General

Replace the distribution

• by an approximation \tilde{p} so that a and b are independent given c

$$\tilde{p}(a \mid b, c) = p(a \mid c)$$

$$\tilde{p}(b \mid a, c) = p(b \mid c)$$

70

Approximation by Assuming Conditional Independence

This leads to

$$p(a,b,c) = p(a \mid b,c) \ p(b \mid c) \ p(c)$$

$$\simeq p(a \mid c) \ p(b \mid c) \ p(c)$$

$$= p(a \mid c) \ \frac{p(c)}{p(c)} \ p(b \mid c) \ p(c)$$

$$= \frac{p(a,c) \ p(b,c)}{p(c)}$$
approximation

Sparsification in SEIFs

- Goal: approximate Ω so that it is and stays sparse
- Realized by maintaining only links between the robot and a few landmarks
- This also limits the number of links between landmarks

Limit Robot-Landmark Links

 Consider a set of active landmarks during the updates

73

Sparsification Considers Three Sets of Landmarks

- Active ones that stay active
- Active ones that become passive
- Passive ones

$$m = m^+ + m^0 + m^-$$
 active active passive to passive

Active and Passive Landmarks

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

74

Sparsification

- Remove links between robot's pose and active landmarks that become passive
- Equal to conditional independence given the other landmarks
- No change in the links of passive ones
- Sparsification is an approximation!

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = p(x_t, m^+, m^0, m^- \mid z_{1:t}, u_{1:t})$$

 $\simeq \dots$

Sparsification

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} \mid m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} \mid m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq \dots$$

Given the active landmarks, the passive landmarks do not matter for computing the robot's pose (so set to zero)

77

79

Sparsification

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq p(x_{t} | m^{+}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

Sparsification: assume conditional independence of the robot's pose from the landmarks that become passive (given $m^+, m^- = 0$)

78

Sparsification

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq p(x_{t} | m^{+}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$= \frac{p(x_{t}, m^{+} | m^{-} = 0)}{p(m^{+} | m^{-} = 0)} p(m^{+}, m^{0}, m^{-})$$

$$= \tilde{p}(x_{t}, m)$$

Information Matrix Update

 Sparsifying the direct links between the robot's pose and m^0 results in

$$\tilde{p}(x_t, m \mid z_{1:t}, u_{1:t})
\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{N(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$$

- The sparsification replaces Ω, ξ by approximated values
- Express $ilde{\Omega}$ as a sum of three matrices $ilde{\Omega}_t \ = \ \Omega_t^1 \Omega_t^2 + \Omega_t^3$

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Sparsified Information Matrix

$$\tilde{p}(x_t, m \mid z_{1:t}, u_{1:t})$$

$$\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$$

- Conditioning Ω_t on $m^-=0$ yields Ω_t^0
- Marginalizing m^0 from Ω^0_t yields Ω^1_t
- Marginalizing x,m^0 from Ω^0_t yields Ω^2_t
- Marginalizing x from Ω_t yields Ω_t^3
- Compute sparsified information matrix

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

81

Information Vector Update

• The information vector can be recovered directly by:

$$\tilde{\xi}_{t} = \tilde{\Omega}_{t} \mu_{t}
= (\Omega_{t} - \Omega_{t} + \tilde{\Omega}_{t}) \mu_{t}
= \Omega_{t} \mu_{t} + (\tilde{\Omega}_{t} - \Omega_{t}) \mu_{t}
= \xi_{t} + (\tilde{\Omega}_{t} - \Omega_{t}) \mu_{t}$$

82

Sparsification

SEIF_sparsification(ξ_t, Ω_t, μ_t):

- 1: define F_{m_0} , F_{x,m_0} , F_x as projection matrices to m_0 , $\{x, m_0\}$, and x, respectively
- 2: $\Omega^0_t = F_{x,m^+,m^0} \ F^T_{x,m^+,m^0} \ \Omega_t \ F_{x,m^+,m^0} \ F^T_{x,m^+,m^0}$
- 3: $\tilde{\Omega}_{t} = \Omega_{t} \Omega_{t}^{0} F_{m_{0}} (F_{m_{0}}^{T} \Omega_{t}^{0} F_{m_{0}})^{-1} F_{m_{0}}^{T} \Omega_{t}^{0} + \Omega_{t}^{0} F_{x,m_{0}} (F_{x,m_{0}}^{T} \Omega_{t}^{0} F_{x,m_{0}})^{-1} F_{x,m_{0}}^{T} \Omega_{t}^{0} \Omega_{t} F_{x} (F_{x}^{T} \Omega_{t} F_{x})^{-1} F_{x}^{T} \Omega_{t}$
- 4: $\tilde{\xi}_t = \xi_t + (\tilde{\Omega}_t \Omega_t) \mu_t$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t$

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Four Steps of SEIF SLAM

```
\begin{array}{lll} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t) : \\ 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\boldsymbol{\mathcal{D}DNE} \\ 2: & \xi_t,\Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \  \, \mathbf{DONE} \\ 3: & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) \  \, \mathbf{DONE} \\ 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t) \  \, \mathbf{DONE} \\ 5: & return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}
```

Effect of the Sparsification

SEIF SLAM vs. EKF SLAM

- Roughly constant time complexity vs. quadratic complexity of the EKF
- Linear memory complexity vs. quadratic complexity of the EKF
- SEIF SLAM is less accurate than EKF SLAM (sparsification, mean recovery)

86

SEIF & EKF: CPU Time

87

SEIF & EKF: Memory Usage

SEIF & EKF: Error Comparison

Influence of the Active Features

Influence of the Active Features

89

Summary on SEIF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects direct links by sparsification
- Mean computation is an approxmation
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Literature

Sparse Extended Information Filter

 Thrun et al.: "Probabilistic Robotics", Chapter 12.1-12.7