Robot Mapping

Sparse Extended Information

Reminder: Parameterizations
for the Gaussian Distribution

. moments canonical
Filter for SLAM
»=Q! Q=x""
i stachn : =07 | | £=32""
Cyrill Stachniss ::E M = = M
-
’3: covariance matrix information matrix
AIS i mean vector information vector
1
Motivation Motivation
/small but
non-zero
Gaussian normalized normalized
estimate covariance information

(map & pose) matrix matrix

normalized information matrix

Most Features Have Only a
Small Number of Strong Links

. robot features
link active passive

normalized information matrix

[

Information Matrix

= Information matrix can be interpreted
as a graph of constraints/links
between nodes (variables)

= Can be interpreted as a MRF

Missing links indicate conditional
independence of the random variables

(2;; tells us the strength of a link
Larger values for nearby features

Most off-diagonal elements in the
information are close to 0 (but #0)

Create Sparsity

= "Set” most links to zero/avoid fill-in

= Exploit sparseness of (2 in the
computations

= sparse = finite number of non-zero
off-diagonals, independent of the
matrix size

Effect of Measurement Update
on the Information Matrix

Tt M1MoMs3 Tt
o G
mi
mo %
ms3 ?n(l m2 Y¢

before any observations

Effect of Measurement Update
on the Information Matrix

Lt M1mams T
T .
e pie
m m
3 R
3

robot observes landmark 1

Effect of Measurement Update
on the Information Matrix

Lt M1mMmams T
Lt
mi
ma
m m
3 T
3

robot observes landmark 2
10

Effect of Measurement Update
on the Information Matrix

= Adds information between the robot’s
pose and the observed feature

Tt M1Moms Tt M1 Mo M3

z: |
mi

ma

=

m3

11

Effect of Motion Update on the
Information Matrix

Lt M1mMmams Tt
Lt
my
mo
m m
3 SR
3

before the robot’s movement
12

Effect of Motion Update on the
Information Matrix

Tt41 1M1 M2 M3

Effect of Motion Update on the
Information Matrix

Tei1 Tt+1 1M1 M2 M3 Ti+1
Tti1 Tt41 I
mi — | mi
ma ma
ms3 ™ m2 Yy ms3 m me Y
ms ms3
after the robot’'s movement effect of the robot’'s movement
13 14
Effect of Motion Update on the Sparsification
Information Matrix
= Weakens the links between the robot’s
pose and the landmarks T+ 1M1 Mo M3 Tiy1
= Add links between landmarks T+
m
Tt mipmams Ti+1111 M2 M3 !
mao
Li4+1
m m
. 3 o 2 ?53
‘ m2
ms3 before sparsification

15

16

Sparsification

Sparsification

Tt4+1 1M1 Mo M3 Tii1 Tt+11M1 M2 M3 Tt41
Ti41 - Tt41
ma \) ma \
ma2 ma2
ms a3 mo i,r\?: ms my ma ifr\\;
3 3
before sparsification removal of the link between m; and T¢+1
17 18
Sparsification Sparsification
= Sparsification means “ignoring” links
(assuming conditional independence)
Tl M my ms Tt+1 = Here: links between the robot’s pose
Tt+1 and some of the features
m
1 Tt411M1 Mo M3 Tt411M1 Mo M3
m2 X X
t+1 t+1
m m
3 my 2 ?53

effect of the sparsification

19

ma ‘ ma
mao mao

m3 ms3

20

Active and Passive Landmarks

Key element of SEIF SLAM to obtain an
efficient algorithm

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

21

Active vs. Passive Landmarks

Li+11M1 M2 M3 Tt
Tt+1
mi
mo V
m
ms3 mq 2 PAg

. active mg
was active,

now passive passive

22

Sparsification in Every Step

= SEIF SLAM conducts a sparsification
steps in each iteration

Effect:

= The robot’s pose is linked to the active
landmarks only

= Landmarks have only links to nearby
landmarks (landmarks that have been
active at the same time)

23

Key Steps of SEIF SLAM

1. Motion update
2. Measurement update
3. Sparsification

24

Four Steps of SEIF SLAM

1. Motion update

2. Measurement update

3. Update of the state estimate
4. Sparsification

The mean is needed to apply the
motion update, for computing an
expected measurement and for
sparsification

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1,Us, 2t):

Et, Q. iy = SEIF _motion_update(&_1, Y1, fie—1, Ug)
&, = SEIF_measurement_update(gt, Oy, fig, 2t)

ur = SEIF _update_state_estimate(&;, Q, fit)

&, Q) = SEIF _sparsification(&;, Qy, ;)

return th, Qt, It

Note: we maintain &, 2, it

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1, Ut, 2¢):

&, Q4, iy = SEIF _motion_update(&_1, 1, fte—1, uq)
¢,Q; = SEIF _measurement_update(&;, Qy, fis, 2;)

ur = SEIF update_state_estimate (&, 2, fit)

ét, Q= SEIF sparsification(&;, ¢, 1)

return {;:t, Qt, Lt

The corrected mean u; is estimated
after the measurement update of
the canonical parameters &, €2

Four Steps of SEIF SLAM

SEIF_SLAM (&1, Q1 fle—1,Us, 21):

‘ &, Q4 iy = SEIF _motion_update(&_1, 1, fts—1, us)
2: &,,Q; = SEIF _measurement_update(&;, Qy, fis, %)

3: ur = SEIF update_state_estimate(&;, 2, i)

4: g}, Q= SEIF _sparsification(&;, ¢, pit)

9: return {;:t, Qt, L

Matrix Inversion Lemma

= Before we start, let us re-visit the
matrix inversion lemma

= For any invertible quadratic matrices R
and Q and any matrix P, the following
holds:

(R+PQPT)~
R'-R'PQ'+PTR P PT R

29

SEIF SLAM - Prediction Step

= Goal: Compute &, Q;, i; from motion
and the previous estimate &1, 1, pue—1

= Efficiency by exploiting sparseness of
the information matrix

30

Let us start from EKF SLAM...

EKF_SLAM_Prediction (i1, 51, us, 2, Ry):

Ztcospup—1,0 — - cos(pe—1,0 + wrAt)

Wi

tht

0 —Ztsinp 19—!—”‘ sin(pe—1,0 + wiAt)

(__Sln.ut 10+ 5 sin(ue—1,0 + wiAt))
0

0

0 0

0 —2tcosp—1,0+5- cos(/tt 1,0 + wiAt)
4 Gy=I+FT F,

o

5 % =G % 1 Gl +F' RV F,
N——

Ry

31

Let us start from EKF SLAM...

EKF_SLAM_Prediction (1, 51, us, 2, Ry):

10 0 0---0
22 F,=|010 omo
0010 copy & paste

—absinp_1,0 + 2 sin(p—1,0 + wiAt)
3: =py_1+ FF cosut 1,0 — w—“' cos(pt—1,0 + wiAt)
(wi At copy l paste
0 0 Lt oECOS f1y—1,0+ - 2 cos(u, 1.0 + wiAt)
4: Gy=I1+FF (00 ——smut 19+v* sin(fu— 19+tht)g F,
0 0 0 copy & paste

5 Y% =Gi%_ 1 Gl +FI' RYF,
N ——

Ry

32

Let us start from EKF SLAM...

EKF_SLAM Prediction(u—1, X¢—1,us, 2¢, Rt):

10 0 0---0
22 Fp,=(101 0 0---0
001 0---0 /copy & paste

(—Zbsinpu—1,0 + 55 sin(ue—1,0 + wiAt)
0
0
0

Shcospip—1,0 — o5 cos(pe—1,0 + wiAt)
wi At copy & paste

- cosut Lotk cos(m 1,0 + wiAt)
4 Gy =I+FT
paste

0

0 —Zksinpy_1 0+ i Csin(pue—1,0 + wiAt)

0 0 copy
T

5: t = Gt Et,1 Gg‘ + .Fz th Fw
——

\ R,]

L]
let’s begin with computing the information matrix... 33

SEIF - Prediction Step (1/3)

Algorithm SEIF _motion_update(&—1, D1, tie—1, ut):
1 0 0 0---0
01 0 0---0
0 0 1 0---0
——
2N
— sm,ut 1,6+ 2 sm(ut 1,0 + weAt)
3 0= —t cospt 1.0 — Zj—i cos(pu—1,0 + wrAt)

tht

00 Z_i COS fl4—1,0 — :}—i cos(pe—1,0 + wiAt)
4: A= 0 0 :}—z sin Hi—1,0 — :)—i Sin(,ut—l,B + tht)
0 0 0

34

Compute the Information Matrix

= Computing the information matrix

Qt - it_l
= (G, GF+ R
= [+ R

= with the term @, defined as

o, = [G, oY 6T

= [G{17' Qi G

35

Compute the Information Matrix

= We can expand the noise matrix R

Q = [®'+ R
= [@,' + F; R} F,]

—1

—1

36

Compute the Information Matrix

= Apply the matrix inversion lemma

— —1
Q = [®;'+ R
= [®;'+ F! R} F,]
= & - F'(RI'+F, & FY"' F, &,

-1

3x3 matrix

37

Compute the Information Matrix

= Apply the matrix inversion lemma

_ -1
Q= [®'+ Ry
= [0+ F Ry Fy
= & & F'(RI'+F, & FY"' F, &,

T 3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

-1

38

Compute the Information Matrix

= Apply the matrix inversion lemma

O = [+ R

= [0+ F; R} Fi

= & —®, F' (R '+ F, & FI"' F, &,
1‘ 3x3 matrix 1‘

Zero except Zero except
3x3 block 3x3 block

—1

= Constant complexity if ¢, is sparse!

39

Compute the Information Matrix

= This can be written as

— —1
Q = [0+ Ry
= [® '+ F] R} F,|
= & — & FI (R '+ F, & FI)"' F, &,

—1

Kt

= P, — Ky

= Question: Can we compute o,
efficiently (o, = [GT]' Q,_1 G;1)?

40

Computing &, = [GT]"' Q,_; G;*

= Goal: constant time if Q;_; is sparse

41

Computing @, = [GT]! Q,_; G; !

= Goal: constant time if Q;_; is sparse
Gt = (I+F AF)™!

- (e)
|

3x3 identity 2Nx2N identity

42

Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+FF'AF,)™!

A+ 0 N\
B 0 Ion

B (A+1I3)7t 0
B 0 Irn

holds for all block matrices where
the off-diagonal blocks are zero

43

Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+F'AF)™!

[A+I; 0\
B 0 Ion
B (A+1I3)7t 0
- 0 Ion
(A + 13)_1 —

Is 0
= [3+2N‘|‘(f 0 3 O)

Note: 3x3 matrix

44

Computing &, = [GT]! Q,_; G;*

= Goal: constant time if Q;_; is sparse
G;' = (I+FF'AF,)™!

A+ 0 T
- 0 Ion

_ (A+I)7" 0
B 0 Irn

A+I3)" =13 0
= I3—|—2N+<(33 3 0)

= I+FF[(I+A)'~1F,

J/

vy

= I+ 45

Computing @, = [GT]! Q,_; G; !
= We have
Gyl=T1+7, GI=t =14+ 0T
= with
U, =F'[(I+A)'—1I]F,

3x3 matrix

= U, is zero except of a 3x3 block
= G; 'is an identity except of a 3x3 block

46

Computing &, = [GT]7' Q,_1 G;*

Given that:

= G;'and [G]7! are identity matrices
except of a 3x3 block

= The information matrix is sparse

= This implies that
o, = [GT]71 1 G

= can be computed in constant time

47

Constant Time Computation of o,

= Given {2;_; is sparse, the constant time
update can be seen by

o, = [GI]" Q1 Gt
= [T+97)Quy (I+Ty)
= Q1+ \I’:EF Q1+ Q1 ¥y + ‘IJ;,F Q1 Uy

At

= U1+ M

all elements zero except a
constant number of entries

48

Prediction Step in Brief

= Compute ¥,

= Compute)\; using U,

= Compute ®; using ¢

= Compute k¢ using o,

= Compute Q; using &, and k¢

49

SEIF - Prediction Step (2/3)

SEIF _motion_update(&;—1, Q—1, fie—1, ut):
Fp=---

§=-...

A=-...

U, =Fl'[(I+A) -1 F,

M= Q1+ Qg U+ U Qi Wy
Q=N+ M

ke =® FI(R;'+ F, ® F')"' F, &,
Qt =0y — 5y

Information matrix is computed, now do the
same for the information vector and the mean

50

Compute the Mean

= The mean is computed as in the EKF
fe = m1+Fl0
= Reminder (from SEIF motion update)

1 0 0 0---0

9 F,— 010 O0---
0 0 1 -0

———

2N
(—:—i sin py—1,0 + :}—‘t sin(pe—1,0 + wiAt))
J =

o O O
o

Shcospug—1,0 — o8 cos(pe—1,0 + wiAt)
tht
51

Compute the Information Vector
= We obtain the information vector by

&

= Q (-1 +FL 6)

= QL&+ FL &)

52

Compute the Information Vector

= We obtain the information vector by
&
= O (w—1 + EL)
= Q QY &+ FF6y)
= W Qt__ll 1+ FzT 0y

53

Compute the Information Vector

= We obtain the information vector by
&
= O (-1 +F} &)
= O (U &+ EF 6y)
= Qt__ll &1+ Ff 0y
= (=P 4+ D -+) &+ FL 6,
=0 -0

54

Compute the Information Vector

= We obtain the information vector by
&
= O (-1 + FL)
= QL G+ FE 6
= QN &+ U F 6
= (Qt 0y + Dy — Q1 + Q1) Qt__ll &1+ Fg Oy
=0 -0
= (Qt -0+ D, — Q1) Qt__ll &1+ Qt__ll &1+ FE ¢
—_— — .

= —kKt =Xt

= pt—1 =1

55

Compute the Information Vector

= We obtain the information vector by
&

= O (i1 + FmT 0t)

= QL G+ FE 6

= QO &+ QU FL 6

= (Qt 0y + Dy — Q1 + Q1) Qt__ll &1+ Fg Oy

=0 -0
= (Qt — P+ Dy — Q1) Qt__ll &1+ Qt__ll 1+ Q Fg Oy

= —hkt =Xt = pt—1 =1
= &1+ (M — Ke) pe—1 + N Ff 0y

56

SEIF - Prediction Step (3/3)

SEIF _motion_update(&§;—1, Qt—1, fie—1, ut):

2 =
3 S—..

4 A=-...

5. Wy =FT[(I+A)—I]F,

6: At = \I”tT Qi1+ Q1 Uy + \I/%F Q1 U,
7 q)t = Qt—l +)\t

8 k= F'(R;'+F, ® F')"' F, &,
9: Qt = @t — Kt

100 & =&-1+ (A — Ke) pre—1 + FI'é,
1 iy =1+ FL 6
12: return &, Qy, fiy

57

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1,Us, 2t):

&1,y = SEIF _measurement_update (&, Qy, fit, 2¢)
3: He = SEIF _update_state_estimate(&;, 0, fir)
4: &Ly :~SEIF_sparsiﬁcation(£t, Qu,)

1: Et, Q. iy = SEIF motion update(& 1 LQt_,l, tr=1,DONE

9: return &, Qt, Lt

58

SEIF - Measurement (1/2)

SEIF_measurement_update(&;, Qy, s, 2¢)

o2 0
Qt - < 0 O'¢2 >
for all observed features zi = (r, (;5%)71 do
j=cie (data association)
if landmark j never seen before
< iy) _ (it o > n (T cos(g + fie))
iy Pty ri sin(of + fite)
endif

6:€-61>:(p‘j,z_,at,z>
53/ Hjy = Hiy
=460

ao(
t atan2(dy, 0;) — fie

identical to the EKF SLAM

SEIF - Measurement (2/2)

12: & =&+ Y, HT Q" (2 — 2+H]

13: Q=0+, HT Q;' Hj
14: return &,

‘ —/@% —@y 0 0...0 +q0: /g, 0...0
0. Hi=1: 8y -0, —q 0...0 =6, 46, 0...0
2j—2 2N —2j

11: endfor

Difference to EKF (but as in EIF): /
& = &+ ZHZT Qi " [2f — 2{+H})

Q = O+> HTQ ' H

60

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fe—1, Ut, 2¢):

1: &, Qy, it = SEIF._motion-update(&—1; Q=15 ftr—1, DONE
&, 0 = SEIF-measurement update(ft,Qt,,ut,zt) DONE

[:> p = SEIF update state_estimate(¢;, Qt, fit)
&,Q; = SEIF _sparsification(&;, Qy, ;)

5: return §t, Qt, Lt

61

Recovering the Mean

The mean is needed for the
= [inearized motion model (pose)

» |[inearized measurement model
(pose and visible landmarks)

= gsparsification step (pose and subset
of the landmarks)

62

Recovering the Mean

= In the motion update step, we can
compute the predicted mean easily

SEIF _motion_update(&;—1, Qs—1, fre—1, ut):

11: fig = 1+ F} 6
12: return &, Sy, iy

63

Recovering the Mean
= Computing the corrected mean,

however, cannot be done as easy

= Computing the mean from the
information vector is costly:

p=07"¢

= Thus, SEIF SLAM approximates the
computation for the corrected mean

64

Approximation of the Mean

= Compute a few dimensions of the
mean in an approximated way

= Idea: Treat that as an optimization
problem and seek to find

fi = argmaxp(u)

= argmaxexp (—%MTQM + fT,u>
7
= Seeks to find the value that maximize
the probability density function

65

Approximation of the Mean

= Derive function

= Set first derivative to zero
= Solve equation(s)

= Jterate

= Can be done effectively given that only
a few dimensions of (are needed
(robot’s pose and active landmarks)

no further details here...

66

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1, Ut, 2¢):

1: &y, iy = SEIF_motion_update(ﬁt_l,_Qtrl, =1, DONE
2: &,y = SEIF measurement _update(&;, Oy, i, 2:) DONE
3: it = SEIF update_state_estimate(&;, Q, jir) DONE
4: ft, Q= SEIF sparsification(&;, ¢, 1)

9: return {;:t, Qt, [

67

Sparsification

= In order to perform all previous
computations efficiently, we assumed
a sparse information matrix

= Sparsification step ensures that

= Question: what does sparsifying
the information matrix mean?

68

Sparsification

= Question: what does sparsifying
the information matrix mean?

= [t means “ignoring” some direct links
= Assuming conditional independence

Tt411M1 Mo M3

Ti411M1 M2 M3

Lt+1 Lt+1
mi mi
ma2 - ma2
ms ms o

Sparsification in General
= Replace the distribution
p(a,b,c)

= by an approximation p so that a and b
are independent given ¢

pla|b,c)=pla]c)
p(b | a,c)=p(b]ec)

70

Approximation by Assuming
Conditional Independence

= This leads to

p(a,b,c)

approximation

71

Sparsification in SEIFs

= Goal: approximate () so that it is
and stays sparse

= Realized by maintaining only links
between the robot and a few
landmarks

= This also limits the number of links
between landmarks

72

Limit Robot-Landmark Links

= Consider a set of active landmarks
during the updates

robot features

active passive

7o)

link

normalized information matrix

73

Active and Passive Landmarks

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

74

Sparsification Considers Three
Sets of Landmarks

= Active ones that stay active
= Active ones that become passive
= Passive ones

m = mT +m® + m”
active active passive
to passive

75

Sparsification

= Remove links between robot’s pose
and active landmarks that become
passive

= Equal to conditional independence
given the other landmarks

= No change in the links of passive ones
= Sparsification is an approximation!

P(»Tt,m | Zl:taulzt) = p(xt,m+,m0,m_ | Zl:t,u1:t)

76

Sparsification

= Dependencies from z,u not shown:

p($t,m) - p(xt7m+7m07m_)
= pla | mT,m,m™) p(m™,m",m")
= p(a:t|m+,m0,m =0) (m mo m™)

Given the active landmarks, the
passive landmarks do not matter
for computing the robot’s pose
(so set to zero)

77

Sparsification

= Dependencies from z,u not shown:

plxgy,m) = plag,m”’ ,m° ,m”)
m™) p(m*,m’ m”)

(
= p(zy | mT,mP,
p(zs | mT,m®,m™ =0) p(m™,m" m™)
(

= P

2 | m*,m™ = 0) pm*,m®,m")

1

Sparsification: assume conditional
independence of the robot’s pose from
the landmarks that become passive

(given m*™,m~ =0) .

Sparsification

= Dependencies from z,u not shown:

p(xy,m) = p(azt,m mom)

= D

I
g

79

Information Matrix Update

= Sparsifying the direct links between
the robot’s pose and m° results in

ﬁ(xt,m | Z1:t,u1:t)

p($t’m+‘m7:0,21tault) (m m"'m ’Z1tult)
mT [m=™ = 0,214, u1.t) 7

= The spaxsificafjon replages Q,¢ by
approximated walues

= Express () \as a sym of three matrices

Q = AL -Q2+0

80

Sparsified Information Matrix

]5($t,m | Z1:t,u1:f,)

+ - =0 . .
P(xum \ m »zl.taul.t) p(mo,m+

m- | Z1.¢, U1:
p(m+ | m- = Oazlztaulzt) ’ ’ Lt 1.t)

Conditioning Q; on m~ =0 yields QY
Marginalizing m° from 0 yields Q}
Marginalizing z,m° from QY yields Q?
Marginalizing = from Q; yields O}
Compute sparsified information matrix

Q = AU-02+0

81

Information Vector Update

= The information vector can be
recovered directly by:

& = Qt Mt

= (Q — U + U)w
= Qo+ (Q —)
= & + (Qt — Q) e

82

Sparsification

SEIF _sparsification (&, Q¢, pt):

1: define Fy,,, Fy.m,, Fr as projection matrices
to mg, {x, mg}, and x, respectively
2: 9? = Fa:,m+,m0 F£m+,m0 QO Fm,m+,m0 F£m+7m0
30 Q= Q= QF Foyy (Fy O Fing) ™ F, 9F
+ Qg Fw,mg (qu:jmo Qg Fl‘,mo)il Fg:mo Qg

— 0 F, (FT Q,F,)~! FT Q,

4: G =&+ (% — Q) m

5: return ét, Qt

83

Four Steps of SEIF SLAM

SEIF_SLAM (&1, Q1 fle—1,Us, 21):

1: &, Q4 iy = SEIF-motion-update(&=1; Qr=1;tr=1, DONE
2: £,.Q; = SEIF _measurement_update(&;. Q. fi;. 2;) DANE
3: ur = SEIF-update-state-estimate(&;Qpiir) DONE
4: £.Q, = SEIF _sparsification(&;. Qy, ;) DQNE
5:

return &, 4,

84

Effect of the Sparsification

85

SEIF SLAM vs. EKF SLAM

= Roughly constant time complexity
vs. quadratic complexity of the EKF

= Linear memory complexity
vSs. quadratic complexity of the EKF

= SEIF SLAM is less accurate than EKF
SLAM (sparsification, mean recovery)

86

SEIF & EKF: CPU Time

CPU timef/iteration(second)

1.2

1

0.8

0.6

0.4

0.2

0

' SEIF —e—
EKF —a—

50

100 150 200 250 300 350 400 450
Number of landmarks

500

87

SEIF & EKF: Memory Usage

Bytes

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

EKF —8—

' SEIF —e— _

50

100

150 200 250 300 350 400 450
Number of landmarks

500

88

SEIF & EKF: Error Comparison

0.04 I I I I

' SEIF —e—
0.035 EKF —=—

0.03 - =
0.025 - .

0.02 - =

Average error

0.015 - -

0.01 | =

0.005 =

0 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500
Number of landmarks

89

Influence of the Active Features

EKF 10 9 8 7 6 5 4
160 = - - ' ‘ ‘ ‘ ‘

140 ¢

—ry
N
o

ey
(=}
o

Update time (in sec)
g 8

™
=)

N
o

EKF 10 9 8 7 6 5 4
Active Features

90

Influence of the Active Features

EKF 10 9 8 7 6 5 4

0.6 -

o
(2]

o
>

RMS Error
o
w

| reasonable values for the
02 NUMber of active features
|

|

EKF 10 9 8 7 6 5 4
Active Features

91

Summary on SEIF SLAM

= SEIFs are an efficient approximation
of the EIF for the SLAM problem

= Neglects direct links by sparsification
= Mean computation is an approxmation

= Constant time updates of the filter
(for known correspondences)

= Linear memory complexity

= Inferior quality compared to EKF
SLAM

92

Literature

Sparse Extended Information Filter

= Thrun et al.: “Probabilistic Robotics”,
Chapter 12.1-12.7

93

