Robot Mapping

Sparse Extended Information Filter for SLAM

Cyrill Stachniss

Reminder: Parameterizations for the Gaussian Distribution

moments

$$\Sigma = \Omega^{-1}$$

$$\mu = \Omega^{-1} \xi$$

covariance matrix mean vector

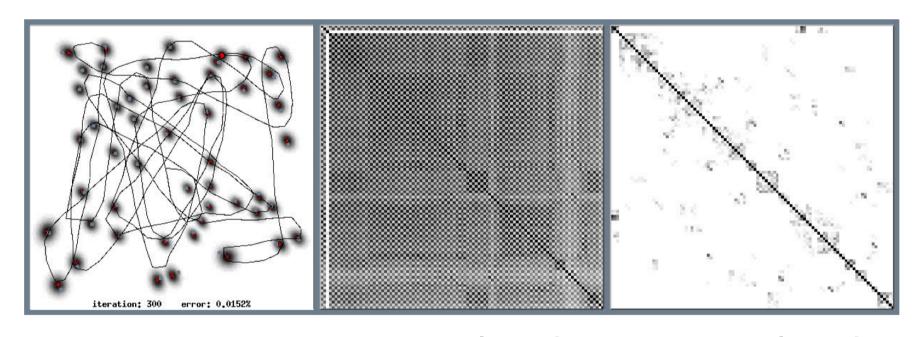
canonical

$$\Omega = \Sigma^{-1}$$

$$\xi = \Sigma^{-1} \mu$$

information matrix information vector

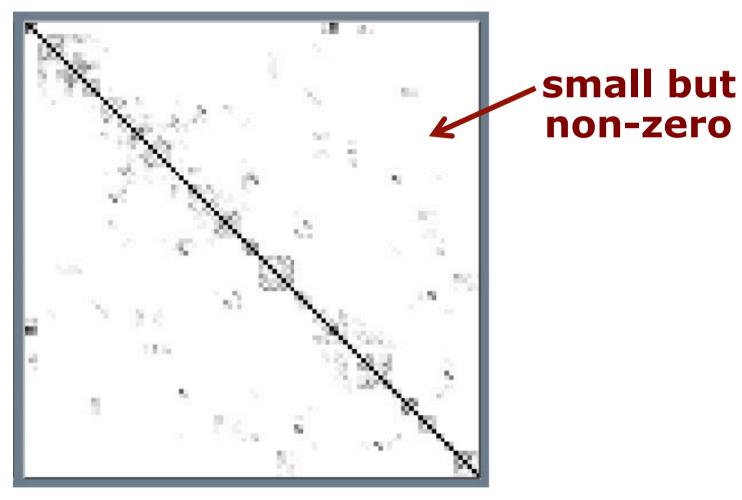
Motivation



Gaussian estimate (map & pose)

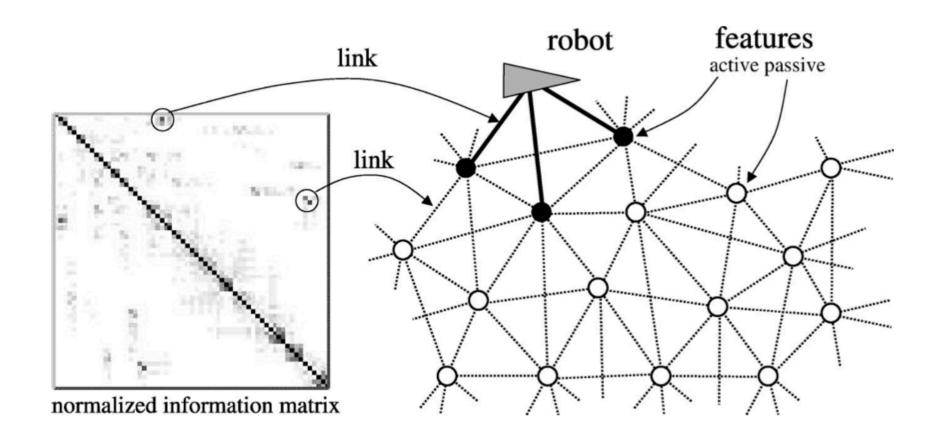
normalized covariance matrix normalized information matrix

Motivation



normalized information matrix

Most Features Have Only a Small Number of Strong Links



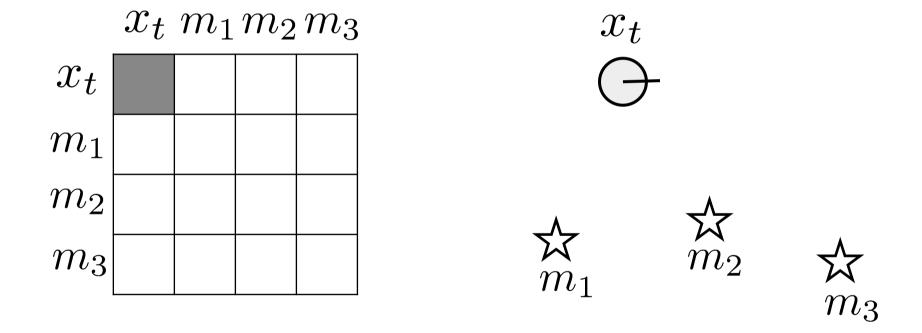
Information Matrix

- Information matrix can be interpreted as a graph of constraints/links between nodes (variables)
- Can be interpreted as a MRF
- Missing links indicate conditional independence of the random variables
- Ω_{ij} tells us the strength of a link
- Larger values for nearby features
- Most off-diagonal elements in the information are close to 0 (but $\neq 0$)

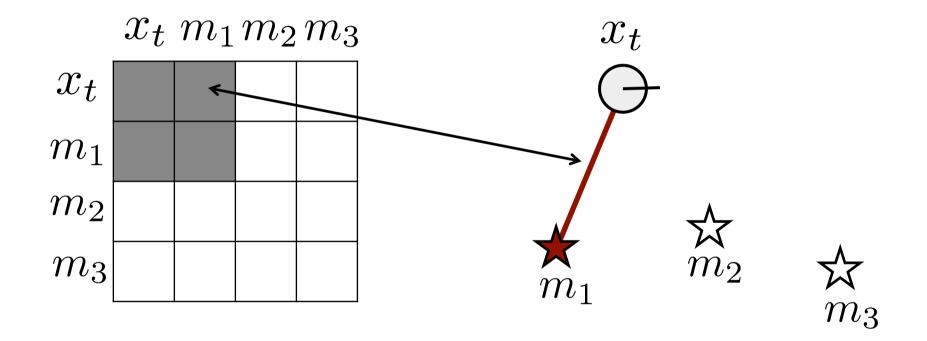
Create Sparsity

- "Set" most links to zero/avoid fill-in
- \blacksquare Exploit sparseness of Ω in the computations

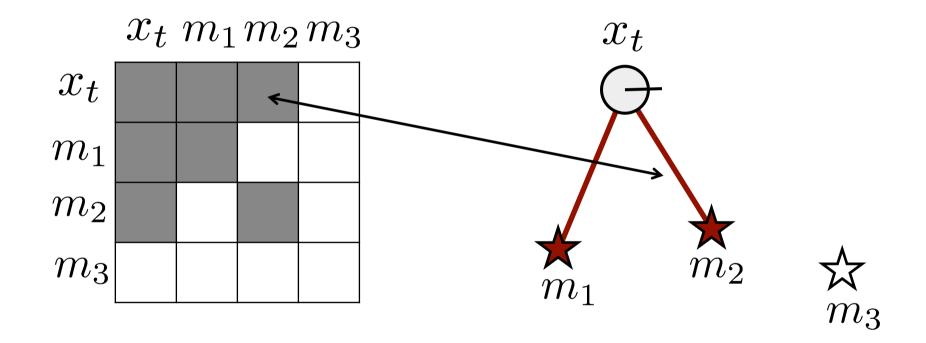
sparse = finite number of non-zero off-diagonals, independent of the matrix size



before any observations

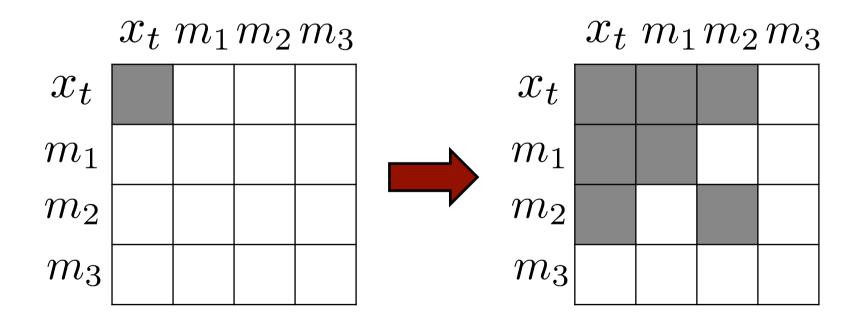


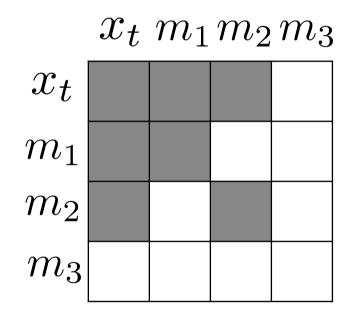
robot observes landmark 1

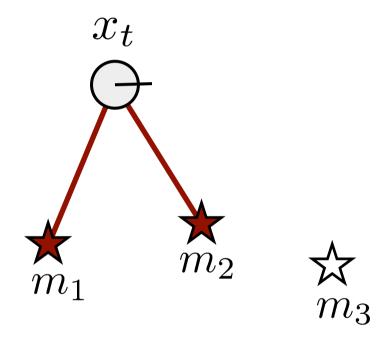


robot observes landmark 2

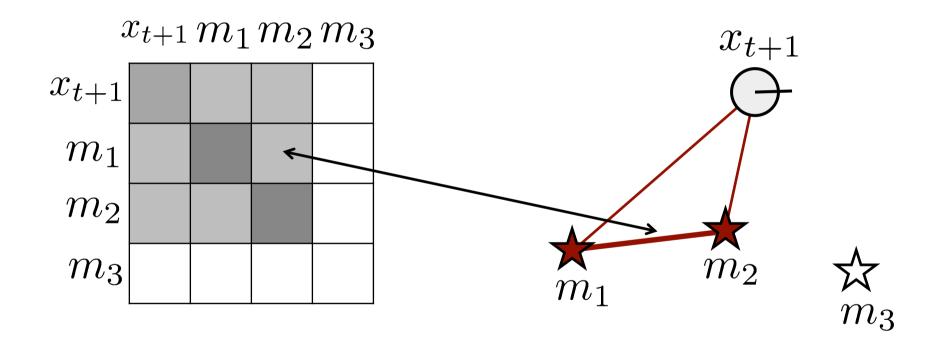
 Adds information between the robot's pose and the observed feature



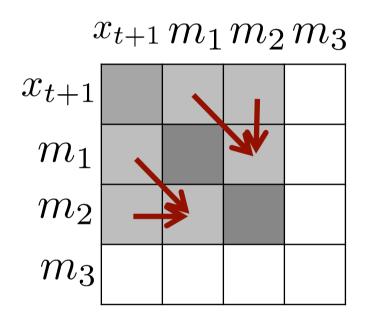


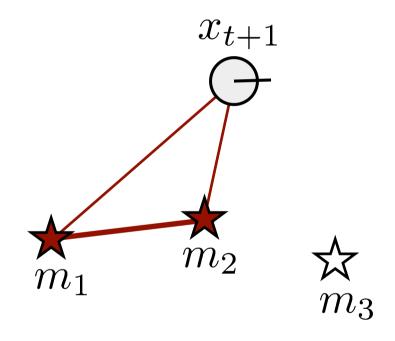


before the robot's movement



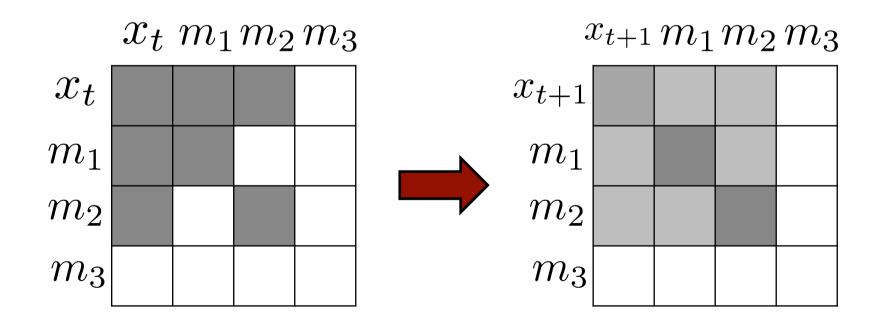
after the robot's movement

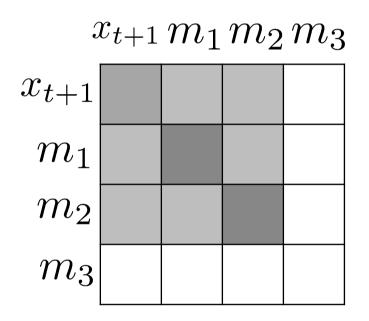


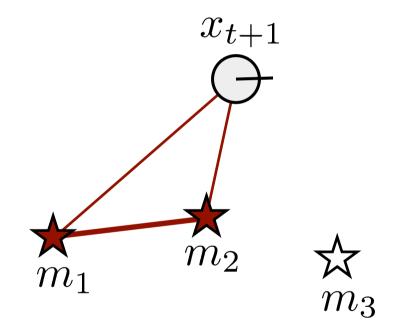


effect of the robot's movement

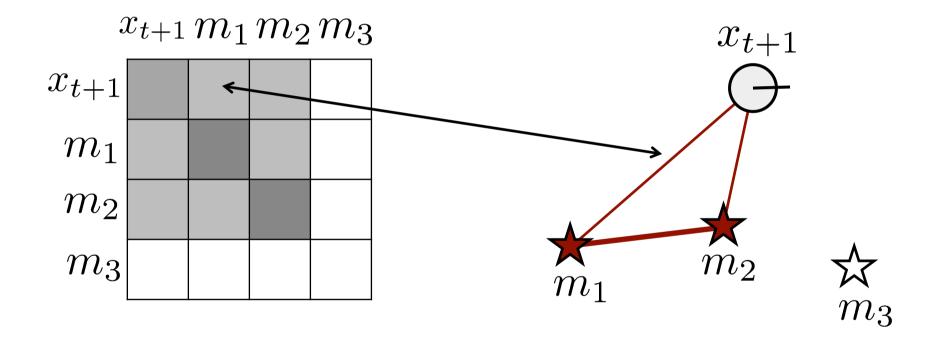
- Weakens the links between the robot's pose and the landmarks
- Add links between landmarks



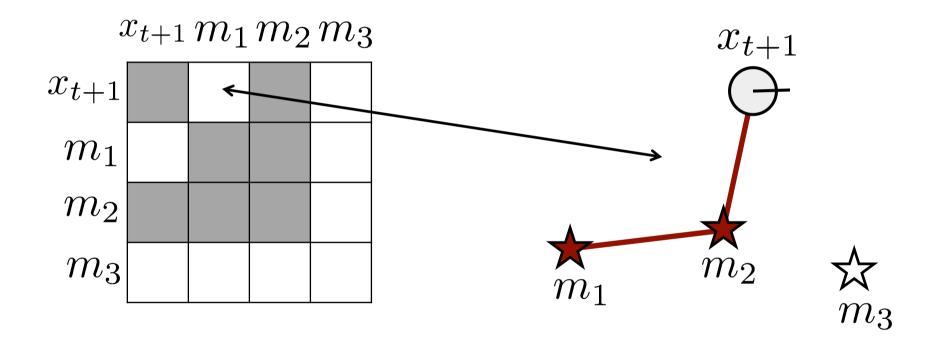




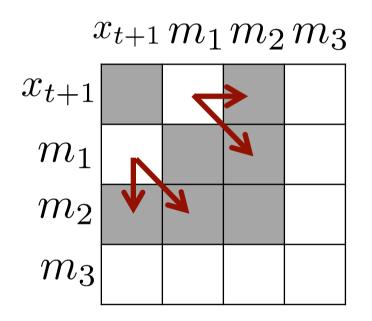
before sparsification

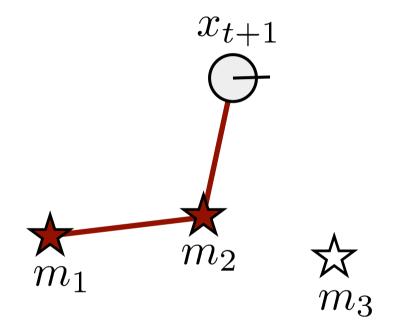


before sparsification



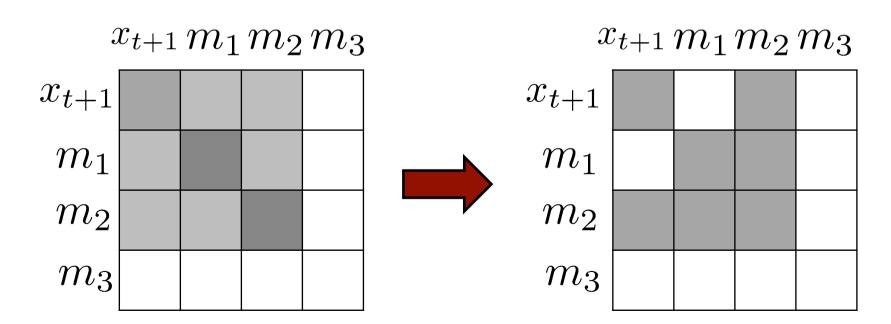
removal of the link between m_1 and x_{t+1}





effect of the sparsification

- Sparsification means "ignoring" links (assuming conditional independence)
- Here: links between the robot's pose and some of the features



Active and Passive Landmarks

Key element of SEIF SLAM to obtain an efficient algorithm

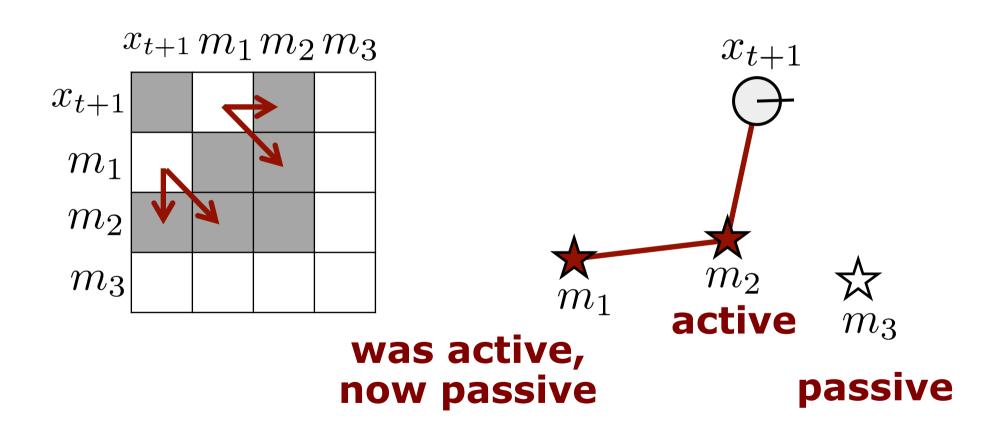
Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Active vs. Passive Landmarks



Sparsification in Every Step

 SEIF SLAM conducts a sparsification steps in each iteration

Effect:

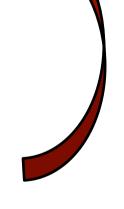
- The robot's pose is linked to the active landmarks only
- Landmarks have only links to nearby landmarks (landmarks that have been active at the same time)

Key Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Sparsification

- 1. Motion update
- 2. Measurement update
- 3. Update of the state estimate
- 4. Sparsification

The mean is needed to apply the motion update, for computing an expected measurement and for sparsification



```
\begin{aligned} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t) : \\ 1: \quad & \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t) \\ 2: \quad & \xi_t, \Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t) \\ 3: \quad & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t, \Omega_t, \bar{\mu}_t) \\ 4: \quad & \tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t, \Omega_t, \mu_t) \\ 5: \quad & return \ \tilde{\xi}_t, \tilde{\Omega}_t, \mu_t \end{aligned}
```

Note: we maintain ξ_t, Ω_t, μ_t

```
\begin{array}{ll} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_{t},z_{t}) \colon \\ 1 \colon & \bar{\xi}_{t},\bar{\Omega}_{t},\bar{\mu}_{t} = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_{t}) \\ 2 \colon & \xi_{t},\Omega_{t} = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_{t},\bar{\Omega}_{t},\bar{\mu}_{t},z_{t}) \\ 3 \colon & \mu_{t} = \mathbf{SEIF\_update\_state\_estimate}(\xi_{t},\Omega_{t},\bar{\mu}_{t}) \\ 4 \colon & \tilde{\xi}_{t},\tilde{\Omega}_{t} = \mathbf{SEIF\_sparsification}(\xi_{t},\Omega_{t},\mu_{t}) \\ 5 \colon & return\ \tilde{\xi}_{t},\tilde{\Omega}_{t},\mu_{t} \end{array}
```

The corrected mean μ_t is estimated after the measurement update of the canonical parameters ξ_t, Ω_t

```
SEIF_SLAM(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t):

1: \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \text{SEIF\_motion\_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)

2: \xi_t, \Omega_t = \text{SEIF\_measurement\_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t)

3: \mu_t = \text{SEIF\_update\_state\_estimate}(\xi_t, \Omega_t, \bar{\mu}_t)

4: \tilde{\xi}_t, \tilde{\Omega}_t = \text{SEIF\_sparsification}(\xi_t, \Omega_t, \mu_t)

5: return \ \tilde{\xi}_t, \tilde{\Omega}_t, \mu_t
```

Matrix Inversion Lemma

 Before we start, let us re-visit the matrix inversion lemma

For any invertible quadratic matrices R and Q and any matrix P, the following holds:

$$(R + P Q P^{T})^{-1} =$$

$$R^{-1} - R^{-1} P (Q^{-1} + P^{T} R^{-1} P)^{-1} P^{T} R^{-1}$$

SEIF SLAM – Prediction Step

- Goal: Compute $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$ from motion and the previous estimate $\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}$
- Efficiency by exploiting sparseness of the information matrix

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

$$2: F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$
 copy & paste

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \mathbf{copy} & \mathbf{paste} \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

Let us start from EKF SLAM...

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):

2:
$$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$
 copy & paste

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$
 copy & paste

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \mathbf{copy} & \mathbf{paste} \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

SEIF - Prediction Step (1/3)

Algorithm SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

$$2: F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & \underbrace{0 \cdots 0}_{2N} \end{pmatrix}$$

3:
$$\delta = \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

4:
$$\Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

Compute the Information Matrix

Computing the information matrix

$$\bar{\Omega}_t = \bar{\Sigma}_t^{-1}$$

$$= \left[G_t \, \Omega_{t-1}^{-1} \, G_t^T + R_t \right]^{-1}$$

$$= \left[\Phi_t^{-1} + R_t \right]^{-1}$$

• with the term Φ_t defined as

$$\Phi_t = \left[G_t \, \Omega_{t-1}^{-1} \, G_t^T \right]^{-1}$$
$$= \left[G_t^T \right]^{-1} \, \Omega_{t-1} \, G_t^{-1}$$

Compute the Information Matrix

We can expand the noise matrix R

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$$

$$= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1}$$

Apply the matrix inversion lemma

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1}
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1}
= \Phi_{t} - \Phi_{t} F_{x}^{T} \left(R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T}\right)^{-1} F_{x} \Phi_{t}$$

Apply the matrix inversion lemma

Apply the matrix inversion lemma

• Constant complexity if Φ_t is sparse!

This can be written as

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1} \\
= \Phi_{t} - \underbrace{\Phi_{t} F_{x}^{T} (R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T})^{-1} F_{x} \Phi_{t}}_{\kappa_{t}}$$

$$= \Phi_{t} - \kappa_{t}$$

• Question: Can we compute Φ_t efficiently $(\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1})$?

Computing
$$\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$$

• Goal: constant time if Ω_{t-1} is sparse

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$3x3 \text{ identity} \qquad 2Nx2N \text{ identity}$$

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

holds for all block matrices where the off-diagonal blocks are zero

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

$$= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

$$= I_{3+2N} + \begin{pmatrix} (\Delta + I_3)^{-1} - I_3 & 0 \\ 0 & 0 \end{pmatrix}$$

Note: 3x3 matrix

• Goal: constant time if Ω_{t-1} is sparse

$$G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$$

$$= \begin{pmatrix} \Delta + I_{3} & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_{3})^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

$$= I_{3+2N} + \begin{pmatrix} (\Delta + I_{3})^{-1} - I_{3} & 0 \\ 0 & 0 \end{pmatrix}$$

$$= I + \underbrace{F_{x}^{T} [(I + \Delta)^{-1} - I] F_{x}}_{\Psi_{t}}$$

$$= I + \Psi_{t}$$

We have

$$G_t^{-1} = I + \Psi_t$$
 $[G_t^T]^{-1} = I + \Psi_t^T$

with

$$\Psi_t = F_x^T \left[(I + \Delta)^{-1} - I \right] F_x$$
3x3 matrix

- Ψ_t is zero except of a 3x3 block
- G_t^{-1} is an identity except of a 3x3 block

Given that:

- G_t^{-1} and $[G_t^T]^{-1}$ are identity matrices except of a 3x3 block
- The information matrix is sparse
- This implies that

$$\Phi_t = [G_t^T]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

can be computed in constant time

Constant Time Computation of Φ_t

• Given Ω_{t-1} is sparse, the constant time update can be seen by

$$\Phi_{t} = [G_{t}^{T}]^{-1} \Omega_{t-1} G_{t}^{-1}
= (I + \Psi_{t}^{T}) \Omega_{t-1} (I + \Psi_{t})
= \Omega_{t-1} + \underbrace{\Psi_{t}^{T} \Omega_{t-1} + \Omega_{t-1} \Psi_{t} + \Psi_{t}^{T} \Omega_{t-1} \Psi_{t}}_{\lambda_{t}}
= \Omega_{t-1} + \lambda_{t}$$

all elements zero except a constant number of entries

Prediction Step in Brief

- Compute Ψ_t
- Compute λ_t using Ψ_t
- Compute Φ_t using λ_t
- Compute κ_t using Φ_t
- lacksquare Compute $\bar{\Omega}_t$ using Φ_t and κ_t

SEIF - Prediction Step (2/3)

```
SEIF_motion_update(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t):

2: F_x = \cdots

3: \delta = \cdots

4: \Delta = \cdots

5: \Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x

6: \lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t

7: \Phi_t = \Omega_{t-1} + \lambda_t

8: \kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t

9: \bar{\Omega}_t = \Phi_t - \kappa_t
```

Information matrix is computed, now do the same for the information vector and the mean

Compute the Mean

The mean is computed as in the EKF

$$\bar{\mu}_t = \mu_{t-1} + F_x^T \delta$$

Reminder (from SEIF motion update)

2:
$$F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \underbrace{0 & \cdots & 0}_{2N} \end{pmatrix}$$
3:
$$\delta = \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix}$$

$$\bar{\xi}_{t}
= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$$

$$\bar{\xi}_{t}
= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$\bar{\xi}_{t}
= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})
= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}
= (\bar{\Omega}_{t} -\Phi_{t} + \Phi_{t} -\Omega_{t-1} + \Omega_{t-1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$\begin{split} \bar{\xi}_{t} &= \bar{\Omega}_{t} \; (\mu_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; (\Omega_{t-1}^{-1} \; \xi_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0}) \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= (\underline{\bar{\Omega}_{t} - \Phi_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=0}) \; \underbrace{\Omega_{t-1}^{-1} \; \xi_{t-1}}_{=1} + \underbrace{\Omega_{t-1} \; \Omega_{t-1}^{-1}}_{=1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \end{split}$$

$$\begin{split} \bar{\xi}_{t} &= \bar{\Omega}_{t} \; (\mu_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; (\Omega_{t-1}^{-1} \; \xi_{t-1} + F_{x}^{T} \; \delta_{t}) \\ &= \bar{\Omega}_{t} \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=0} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=0}) \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= (\underline{\bar{\Omega}_{t} - \Phi_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=\lambda_{t}}) \; \underbrace{\Omega_{t-1}^{-1} \; \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \; \Omega_{t-1}^{-1}}_{=I} \; \xi_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \\ &= \xi_{t-1} + (\lambda_{t} - \kappa_{t}) \; \mu_{t-1} + \bar{\Omega}_{t} \; F_{x}^{T} \; \delta_{t} \end{split}$$

SEIF - Prediction Step (3/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$): $2: F_r = \cdots$ $\delta = \cdots$ 4: $\Delta = \cdots$ 5: $\Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x$ 6: $\lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t$ 7: $\Phi_t = \Omega_{t-1} + \lambda_t$ 8: $\kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t$ 9: $\bar{\Omega}_t = \Phi_t - \kappa_t$ 10: $\bar{\xi}_t = \xi_{t-1} + (\lambda_t - \kappa_t) \mu_{t-1} + \bar{\Omega}_t F_r^T \delta_t$ 11: $\bar{\mu}_t = \mu_{t-1} + F_r^T \delta$ 12: return $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$

Four Steps of SEIF SLAM

```
\mathbf{SEIF\_SLAM}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t): \\ 1: \quad \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, \mathbf{DQNE}) \\ 2: \quad \xi_t, \Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t, z_t) \\ 3: \quad \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t, \Omega_t, \bar{\mu}_t) \\ 4: \quad \tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t, \Omega_t, \mu_t) \\ 5: \quad return \ \tilde{\xi}_t, \tilde{\Omega}_t, \mu_t \\ \end{cases}
```

SEIF - Measurement (1/2)

```
\mathbf{SEIF}_measurement_update(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)
1: Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix}

2: for all observed features z_t^i = (r_t^i, \phi_t^i)^T do

3: j = c_t^i
               j = c_t^i (data association)
   4: if landmark j never seen before
  5:  \left(\begin{array}{c} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{array}\right) = \left(\begin{array}{c} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{array}\right) + \left(\begin{array}{c} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{array}\right) 
                 endif
  7: \delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}
   9: \hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_u, \delta_x) - \bar{\mu}_t \rho \end{pmatrix}
```

identical to the EKF SLAM

SEIF - Measurement (2/2)

10:
$$H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & 0 \dots 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y & 0 \dots 0 \\ \delta_y & -\delta_x & -q & 0 \dots 0 & -\delta_y & +\delta_x & 0 \dots 0 \\ 2j-2 & & & 2N-2j \end{pmatrix}$$

- 11: endfor
- 12: $\xi_t = \bar{\xi}_t + \sum_i H_t^{iT} Q_t^{-1} [z_t^i \hat{z}_t^i + H_t^i \mu_t]$
- 13: $\Omega_t = \bar{\Omega}_t + \sum_i H_t^{iT} Q_t^{-1} H_t^i$
- 14: return ξ_t, Ω_t

Difference to EKF (but as in EIF):

$$\xi_t = \bar{\xi}_t + \sum_i H_t^{iT} Q_t^{-1} [z_t^i - \hat{z}_t^i + H_t^i \mu_t]$$

$$\Omega_t = \bar{\Omega}_t + \sum_i H_t^{iT} Q_t^{-1} H_t^i$$

Four Steps of SEIF SLAM

```
\mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t):
1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\mathbf{DONE})
2: \quad \xi_t,\Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) \text{ DONE}
3: \quad \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t)
4: \quad \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t)
5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t
```

Recovering the Mean

The mean is needed for the

- linearized motion model (pose)
- linearized measurement model (pose and visible landmarks)
- sparsification step (pose and subset of the landmarks)

Recovering the Mean

 In the motion update step, we can compute the predicted mean easily

```
SEIF_motion_update(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t):
2-10:....
11: \bar{\mu}_t = \mu_{t-1} + F_x^T \delta
12: return \ \xi_t, \Omega_t, \bar{\mu}_t
```

Recovering the Mean

- Computing the corrected mean, however, cannot be done as easy
- Computing the mean from the information vector is costly:

$$\mu = \Omega^{-1}\xi$$

 Thus, SEIF SLAM approximates the computation for the corrected mean

Approximation of the Mean

- Compute a few dimensions of the mean in an approximated way
- Idea: Treat that as an optimization problem and seek to find

$$\hat{\mu} = \operatorname{argmax} p(\mu)$$

$$= \operatorname{argmax} \exp\left(-\frac{1}{2}\mu^T \Omega \mu + \xi^T \mu\right)$$

 Seeks to find the value that maximize the probability density function

Approximation of the Mean

- Derive function
- Set first derivative to zero
- Solve equation(s)
- Iterate

• Can be done effectively given that only a few dimensions of μ are needed (robot's pose and active landmarks)

no further details here...

Four Steps of SEIF SLAM

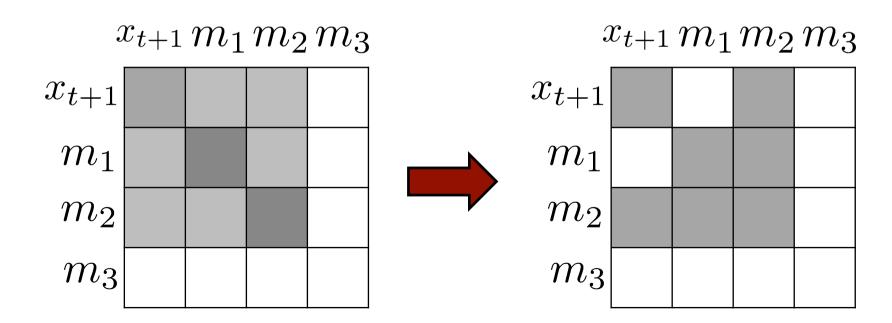
```
\begin{array}{lll} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\boldsymbol{\eta}) \\ 2: & \xi_t,\Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) & \mathbf{DONE} \\ 3: & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) & \mathbf{DONE} \\ \hline 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t) \\ 5: & return\ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}
```

Sparsification

- In order to perform all previous computations efficiently, we assumed a sparse information matrix
- Sparsification step ensures that
- Question: what does sparsifying the information matrix mean?

Sparsification

- Question: what does sparsifying the information matrix mean?
- It means "ignoring" some direct links
- Assuming conditional independence



Sparsification in General

Replace the distribution

• by an approximation \tilde{p} so that a and b are independent given c

$$\tilde{p}(a \mid b, c) = p(a \mid c)$$

$$\tilde{p}(b \mid a, c) = p(b \mid c)$$

Approximation by Assuming Conditional Independence

This leads to

$$p(a,b,c) = p(a \mid b,c) \ p(b \mid c) \ p(c)$$

$$\simeq p(a \mid c) \ p(b \mid c) \ p(c)$$

$$= p(a \mid c) \frac{p(c)}{p(c)} \ p(b \mid c) \ p(c)$$

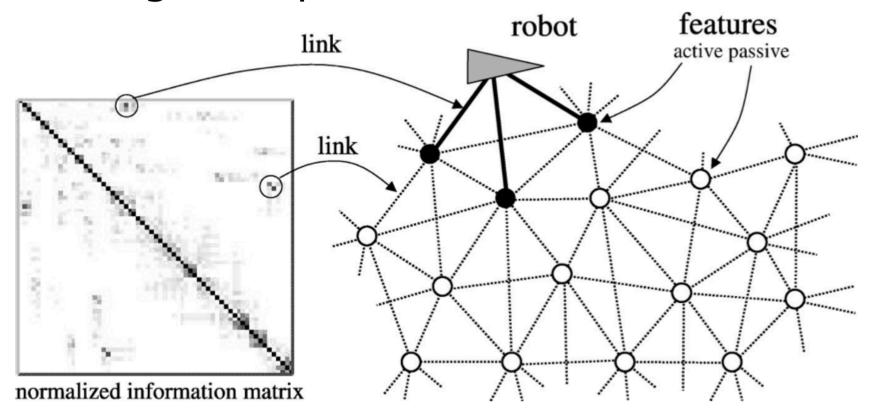
$$= \frac{p(a,c) \ p(b,c)}{p(c)}$$
approximation

Sparsification in SEIFs

- Goal: approximate Ω so that it is and stays sparse
- Realized by maintaining only links between the robot and a few landmarks
- This also limits the number of links between landmarks

Limit Robot-Landmark Links

 Consider a set of active landmarks during the updates



Active and Passive Landmarks

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Sparsification Considers Three Sets of Landmarks

- Active ones that stay active
- Active ones that become passive
- Passive ones

$$m = m^+ + m^0 + m^-$$
 active active passive to passive

- Remove links between robot's pose and active landmarks that become passive
- Equal to conditional independence given the other landmarks
- No change in the links of passive ones
- Sparsification is an approximation!

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = p(x_t, m^+, m^0, m^- \mid z_{1:t}, u_{1:t})$$

 $\simeq \dots$

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq \dots$$

Given the active landmarks, the passive landmarks do not matter for computing the robot's pose (so set to zero)

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq p(x_{t} | m^{+}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

Sparsification: assume conditional independence of the robot's pose from the landmarks that become passive (given $m^+, m^- = 0$)

• Dependencies from z, u not shown:

$$p(x_{t}, m) = p(x_{t}, m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-}) p(m^{+}, m^{0}, m^{-})$$

$$= p(x_{t} | m^{+}, m^{0}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$\simeq p(x_{t} | m^{+}, m^{-} = 0) p(m^{+}, m^{0}, m^{-})$$

$$= \frac{p(x_{t}, m^{+} | m^{-} = 0)}{p(m^{+} | m^{-} = 0)} p(m^{+}, m^{0}, m^{-})$$

$$= \tilde{p}(x_{t}, m)$$

Information Matrix Update

• Sparsifying the direct links between the robot's pose and m^0 results in

$$ilde{p}(x_t, m \mid z_{1:t}, u_{1:t})$$
 $\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} \, p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$ - The sparsification replaces Ω, ξ by

- The sparsification replaces Ω, ξ by approximated values
- Express $\tilde{\Omega}$ as a sum of three matrices

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Sparsified Information Matrix

$$\tilde{p}(x_t, m \mid z_{1:t}, u_{1:t})$$

$$\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$$

- Conditioning Ω_t on $m^-=0$ yields Ω_t^0
- Marginalizing m^0 from Ω^0_t yields Ω^1_t
- Marginalizing x,m^0 from Ω_t^0 yields Ω_t^2
- Marginalizing x from Ω_t yields Ω_t^3
- Compute sparsified information matrix

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Information Vector Update

 The information vector can be recovered directly by:

$$\tilde{\xi}_{t} = \tilde{\Omega}_{t} \mu_{t}
= (\Omega_{t} - \Omega_{t} + \tilde{\Omega}_{t}) \mu_{t}
= \Omega_{t} \mu_{t} + (\tilde{\Omega}_{t} - \Omega_{t}) \mu_{t}
= \xi_{t} + (\tilde{\Omega}_{t} - \Omega_{t}) \mu_{t}$$

SEIF_sparsification(ξ_t, Ω_t, μ_t):

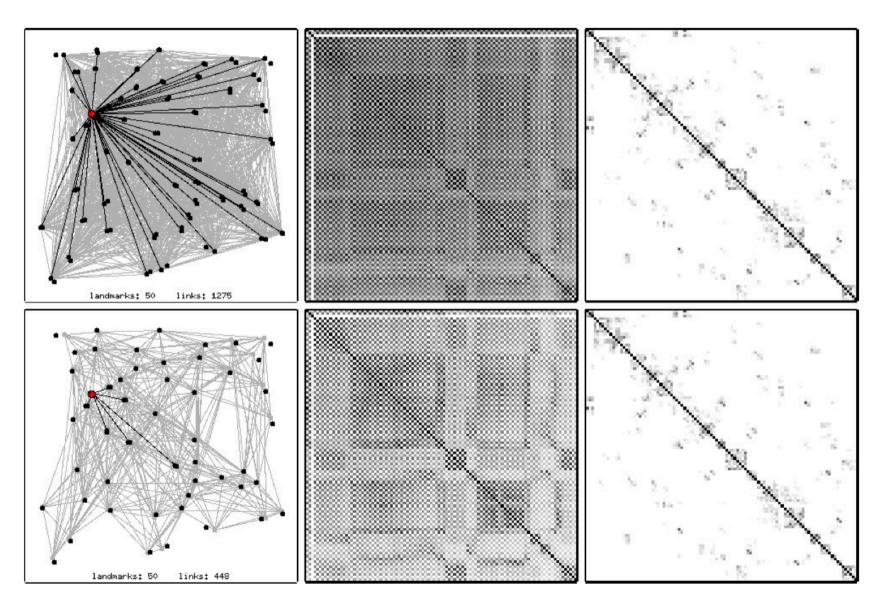
- define F_{m_0}, F_{x,m_0}, F_x as projection matrices to m_0 , $\{x, m_0\}$, and x, respectively
- 2: $\Omega_t^0 = F_{x,m^+,m^0} F_{x,m^+,m^0}^T \Omega_t F_{x,m^+,m^0} F_{x,m^+,m^0}^T$ 3: $\tilde{\Omega}_t = \Omega_t \Omega_t^0 F_{m_0} (F_{m_0}^T \Omega_t^0 F_{m_0})^{-1} F_{m_0}^T \Omega_t^0$ $+\Omega_{t}^{0} F_{x,m_{0}} (F_{x,m_{0}}^{T,0} \Omega_{t}^{0} F_{x,m_{0}})^{-1} F_{x,m_{0}}^{T,0} \Omega_{t}^{0})$ $-\Omega_t F_x (F_x^T \Omega_t F_x)^{-1} F_x^T \Omega_t$
- 4: $\tilde{\xi}_t = \xi_t + (\tilde{\Omega}_t \Omega_t) \mu_t$ 5: $return \, \tilde{\xi}_t, \tilde{\Omega}_t$

$$\widetilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Four Steps of SEIF SLAM

```
\begin{array}{lll} \mathbf{SEIF\_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF\_motion\_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\boldsymbol{D}) \\ 2: & \xi_t,\Omega_t = \mathbf{SEIF\_measurement\_update}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t,z_t) & \mathbf{DONE} \\ 3: & \mu_t = \mathbf{SEIF\_update\_state\_estimate}(\xi_t,\Omega_t,\bar{\mu}_t) & \mathbf{DONE} \\ 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF\_sparsification}(\xi_t,\Omega_t,\mu_t) & \mathbf{DONE} \\ 5: & return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}
```

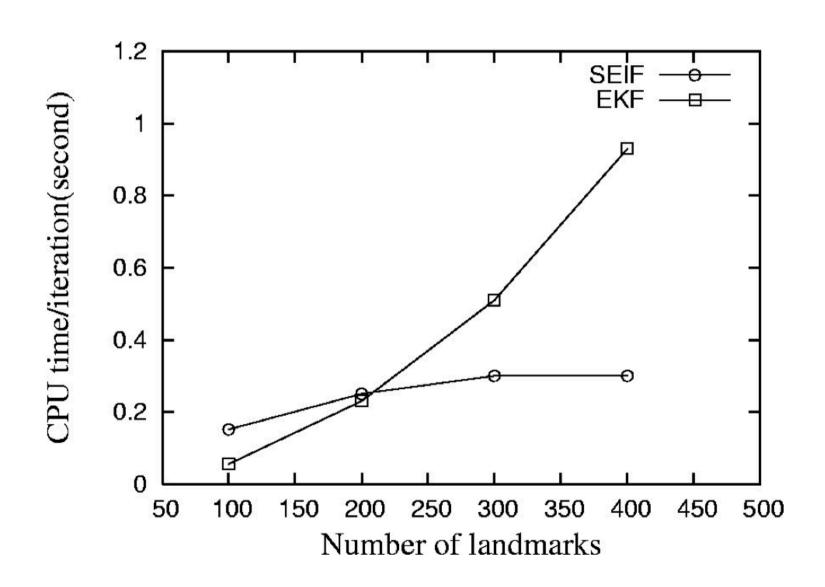
Effect of the Sparsification



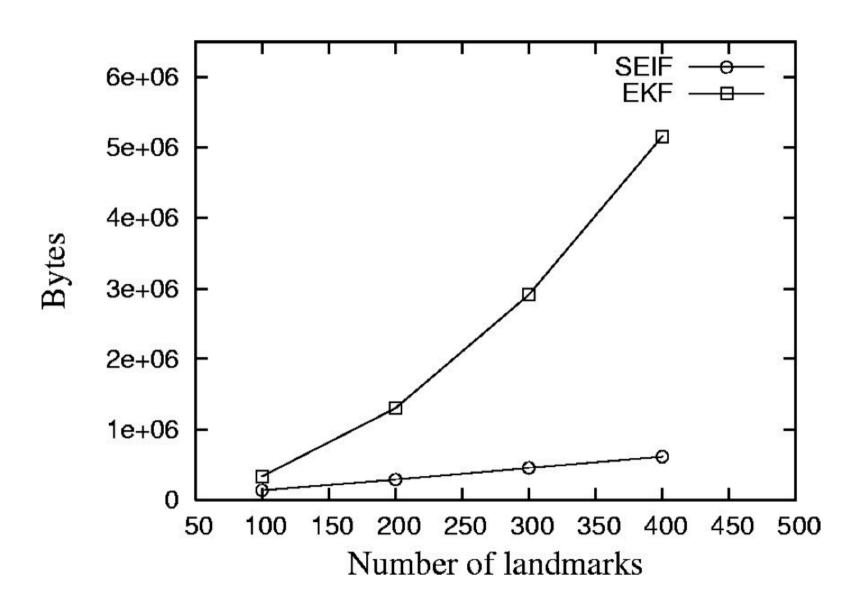
SEIF SLAM vs. EKF SLAM

- Roughly constant time complexity vs. quadratic complexity of the EKF
- Linear memory complexity
 vs. quadratic complexity of the EKF
- SEIF SLAM is less accurate than EKF SLAM (sparsification, mean recovery)

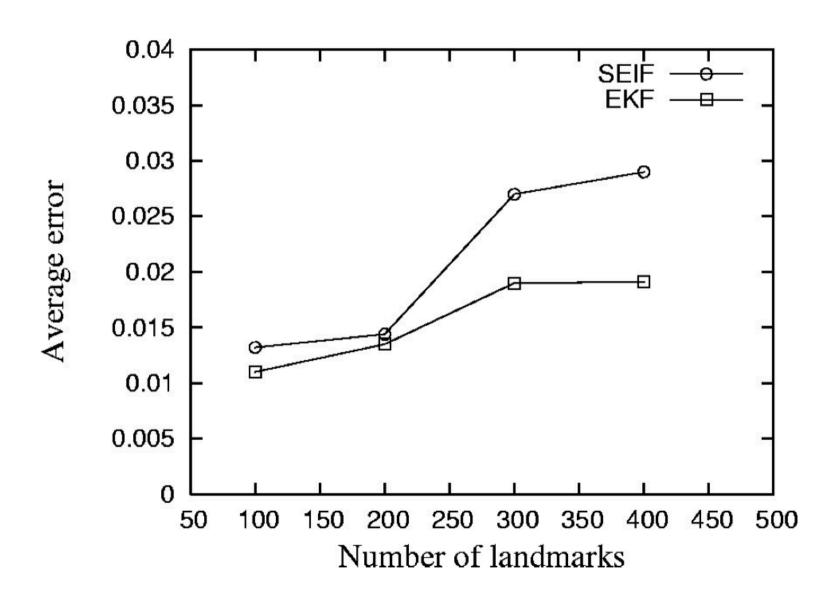
SEIF & EKF: CPU Time



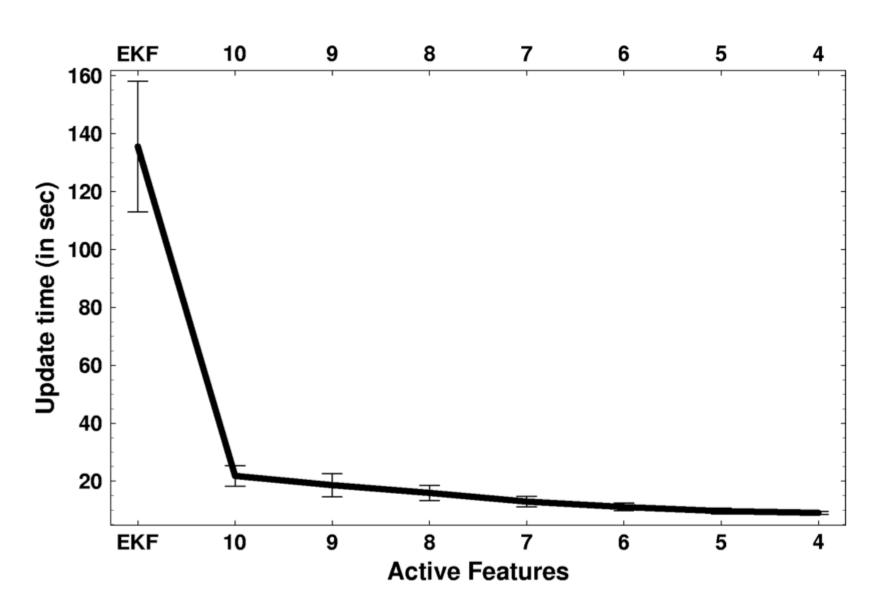
SEIF & EKF: Memory Usage



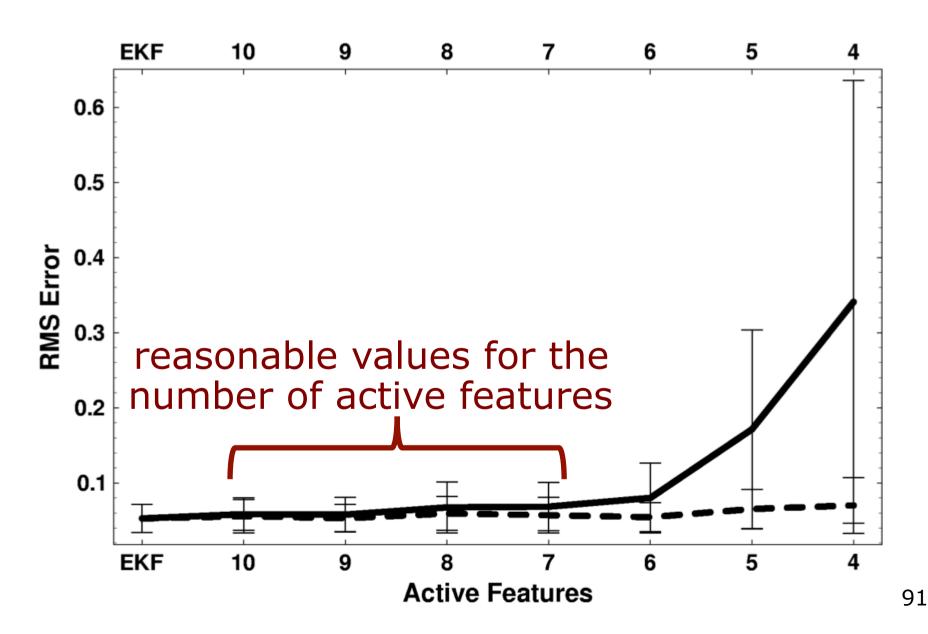
SEIF & EKF: Error Comparison



Influence of the Active Features



Influence of the Active Features



Summary on SEIF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects direct links by sparsification
- Mean computation is an approxmation
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Literature

Sparse Extended Information Filter

 Thrun et al.: "Probabilistic Robotics", Chapter 12.1-12.7