

Features

- So far, we only used feature maps
- Natural choice for Kalman filter-based SLAM systems
- Compact representation
- Multiple feature observations improve the landmark position estimate (EKF)

Grid Maps

- Discretize the world into cells
- Grid structure is rigid
- Each cell is assumed to be occupied or free space
- Non-parametric model
- Large maps require substantial memory resources
- Do not rely on a feature detector

Example

Representation

 Each cell is a binary random variable that models the occupancy

Assumption 1

 The area that corresponds to a cell is either completely free or occupied

Occupancy Probability

- Each cell is a binary random variable that models the occupancy
- Cell is occupied: $p(m_i) = 1$
- Cell is not occupied: $p(m_i) = 0$
- No knowledge: $p(m_i) = 0.5$

Assumption 2

 The world is static (most mapping systems make this assumption)

Representation

 The probability distribution of the map is given by the product over the cells

Assumption 3

 The cells (the random variables) are independent of each other

Representation

 The probability distribution of the map is given by the product over the cells

9

Static State Binary Bayes Filter

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)} \frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

21

From Ratio to Probability

 We can easily turn the ration into the probability

$$\frac{p(x)}{1-p(x)} = Y$$

$$p(x) = Y - Y p(x)$$

$$p(x) (1+Y) = Y$$

$$p(x) = \frac{Y}{1+Y}$$

$$p(x) = \frac{1}{1+\frac{1}{Y}}$$

Static State Binary Bayes Filter

 By computing the ratio of both probabilities, we obtain:

22

From Ratio to Probability

• Using
$$p(x) = [1 + Y^{-1}]^{-1}$$
 directly leads to

$$p(m_i \mid z_{1:t}, x_{1:t}) = \left[1 + \frac{1 - p(m_i \mid z_t, x_t)}{p(m_i \mid z_t, x_t)} \frac{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{p(m_i)}{1 - p(m_i)} \right]^{-1}$$

For reasons of efficiency, one performs the calculations in the log odds notation

Log Odds Notation

 The log odds notation computes the logarithm of the ratio of probabilities

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \underbrace{\frac{p(m_i \mid z_t, x_t)}{1 - p(m_i \mid z_t, x_t)}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}} \\
\implies l(m_i \mid z_{1:t}, x_{1:t}) = \log\left(\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})}\right)$$
25

Log Odds Notation

Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• and with the ability to retrieve p(x)

$$p(x) = 1 - \frac{1}{1 + \exp l(x)}$$

26

Occupancy Mapping in Log Odds Form

The product turns into a sum

$$l(m_i \mid z_{1:t}, x_{1:t}) = \underbrace{l(m_i \mid z_t, x_t)}_{\text{inverse sensor model}} + \underbrace{l(m_i \mid z_{1:t-1}, x_{1:t-1})}_{\text{recursive term}} - \underbrace{l(m_i)}_{\text{prior}}$$

or in short

$$U_{t,i}$$
 = inv_sensor_model $(m_i, x_t, z_t) + l_{t-1,i} - l_0$

Occupancy Mapping Algorithm

Occupancy Grid Mapping

- Moravec and Elfes proposed occupancy grid mapping in the mid 80'ies
- Developed for noisy sonar sensors
- Also called "mapping with know poses"

Inverse Sensor Model for Sonar Range Sensors

In the following, consider the cells along the optical axis (red line)

30

Occupancy Value Depending on the Measured Distance

29

Occupancy Value Depending on the Measured Distance

Occupancy Value Depending on the Measured Distance

Example: Incremental Updating of Occupancy Grids

Occupancy Value Depending on the Measured Distance

Resulting Map Obtained with 24 Sonar Range Sensors

Resulting Occupancy and Maximum Likelihood Map

The maximum likelihood map is obtained by rounding the probability for each cell to 0 or 1.

37

39

Occupancy Grids From Laser Scans to Maps

Inverse Sensor Model for Laser Range Finders

distance between sensor and cell under consideration

38

40

Example: MIT CSAIL 3rd Floor

Incremental Scan Alignment

- Motion is noisy, we cannot ignore it
- Assuming known poses fails!
- Often, the sensor is rather precise
- Scan-matching tries to incrementally align two scans or a map to a scan, without revising the past/map

45

47

Pose Correction Using Scan-Matching

Maximize the likelihood of the **current** pose relative to the **previous** pose and map

Incremental Alignment

Various Different Ways to Realize Scan-Matching

- Iterative closest point (ICP)
- Scan-to-scan
- Scan-to-map
- Map-to-map
- Feature-based
- RANSAC for outlier rejection
- Correlative matching
- ...

With and Without Scan-Matching

Courtesy by D. Hähnel

51

49

Example: Aligning Two 3D Maps

Courtesy by P. Pfaff 50

Motion Model for Scan Matching

Scan Matching Summary

- Scan-matching improves the pose estimate (and thus mapping) substantially
- Locally consistent estimates
- Often scan-matching is not sufficient to build a (large) consistent map

Literature

Static state binary Bayes filter

 Thrun et al.: "Probabilistic Robotics", Chapter 4.2

Occupancy Grid Mapping

 Thrun et al.: "Probabilistic Robotics", Chapter 9.1+9.2

Scan-Matching

- Besl and McKay. A method for Registration of 3-D Shapes, 1992
- Olson. Real-Time Correlative Scan Matching, 2009