# **Robot Mapping**

# Short Introduction to Particle Filters and Monte Carlo Localization

#### **Cyrill Stachniss**

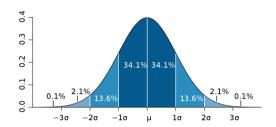


1

#### **Gaussian Filters**

 The Kalman filter and its variants can only model Gaussian distributions

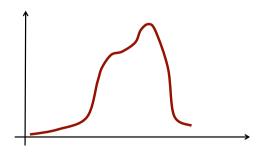
$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$



2

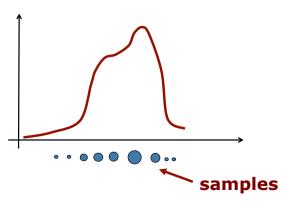
#### **Motivation**

 Goal: approach for dealing with arbitrary distributions



# **Key Idea: Samples**

 Use multiple samples to represent arbitrary distributions



#### **Particle Set**

Set of weighted samples

$$\mathcal{X} = \left\{\left\langle x^{[j]}, w^{[j]} \right\rangle\right\}_{j=1,\dots,J}$$
 state importance hypothesis weight

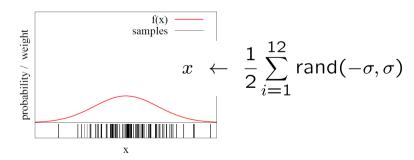
The samples represent the posterior

$$p(x) = \sum_{j=1}^{J} w^{[j]} \delta_{x[j]}(x)$$

5

# **Closed Form Sampling is Only Possible for a Few Distributions**

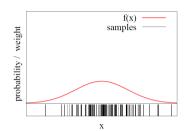
• Example: Gaussian

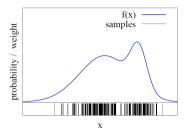


How to sample from other distributions?

# **Particles for Approximation**

Particles for function approximation





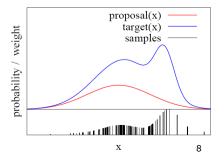
 The more particles fall into a region, the higher the probability of the region

How to obtain such samples?

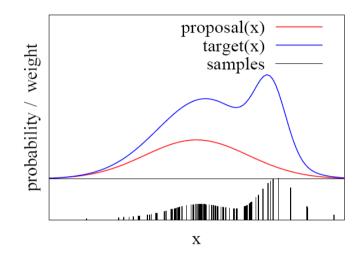
6

# **Importance Sampling Principle**

- We can use a different distribution g to generate samples from f
- Account for the "differences between g and f" using a weight w = f/g
- target f
- proposal g
- Pre-condition:  $f(x)>0 \rightarrow g(x)>0$



# **Importance Sampling Principle**



9

#### **Particle Filter**

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by samples
- Prediction: draw from the proposal
- Correction: weighting by the ratio of target and proposal

The more samples we use, the better is the estimate!

10

# **Particle Filter Algorithm**

1. Sample the particles using the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

• Resampling: Draw sample i with probability  $w_t^{[i]}$  and repeat J times

## **Particle Filter Algorithm**

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):

1: \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset

2: for j = 1 to J do

3: sample x_t^{[j]} \sim \pi(x_t)

4: w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})}

5: \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle

6: endfor

7: for j = 1 to J do

8: draw i \in 1, \ldots, J with probability \propto w_t^{[i]}

9: add x_t^{[i]} to \mathcal{X}_t

10: endfor

11: return \mathcal{X}_t
```

#### **Monte Carlo Localization**

- Each particle is a pose hypothesis
- Proposal is the motion model

$$x_t^{[j]} \sim p(x_t \mid x_{t-1}, u_t)$$

Correction via the observation model

$$w_t^{[j]} = \frac{target}{proposal} \propto p(z_t \mid x_t, m)$$

13

15

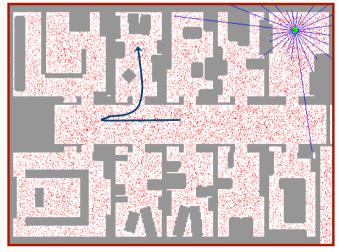
# **Particle Filter for Localization**

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
              \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
             for j = 1 to J do
                    sample x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})

w_t^{[j]} = p(z_t \mid x_t^{[j]})
                    \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle
6:
              endfor
             for j = 1 to J do
                     draw i \in 1, \ldots, J with probability \propto w_t^{[i]}
                     add x_t^{[i]} to \mathcal{X}_t
9:
              endfor
10:
11:
              return \mathcal{X}_t
```

14

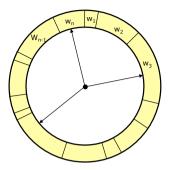
# **Application: Particle Filter for Localization (Known Map)**



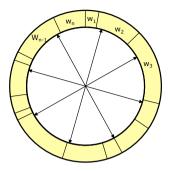
# Resampling

- Draw sample i with probability  $w_{\scriptscriptstyle t}^{[i]}$ . Repeat 1 times.
- Informally: "Replace unlikely samples by more likely ones"
- Survival of the fittest
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number. of samples

# Resampling



- Roulette wheel
- Binary search
- O(J log J)

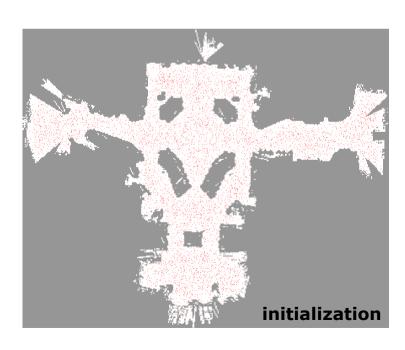


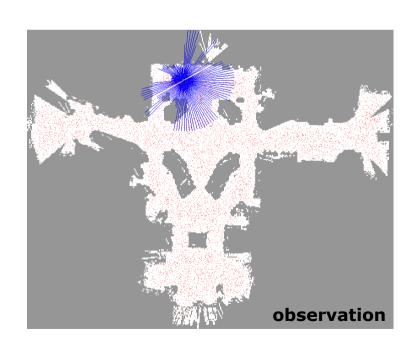
- Stochastic universal sampling
- Low variance
- O(J)

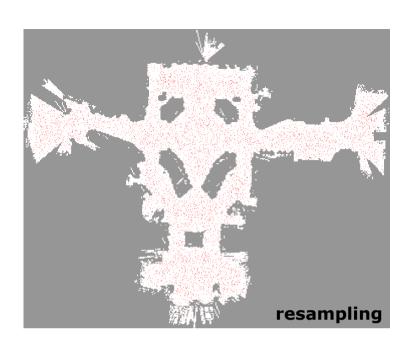
17

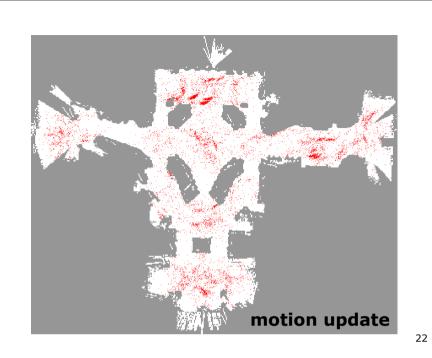
# **Low Variance Resampling**

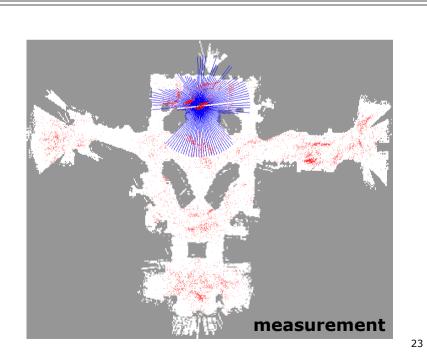
```
Low_variance_resampling(\mathcal{X}_t, \mathcal{W}_t):
          \bar{\mathcal{X}}_t = \emptyset
1:
          r = \operatorname{rand}(0; J^{-1})
          c = w_t^{[1]}
3:
         i = 1
          for j = 1 to J do
               U = r + (j-1)J^{-1}
               while U > c
                    i = i + 1
                    c = c + w_t^{[i]}
               end while
10:
               add x_t^{[i]} to \bar{\mathcal{X}}_t
11:
12:
          end for
13:
          return \bar{\mathcal{X}}_t
```

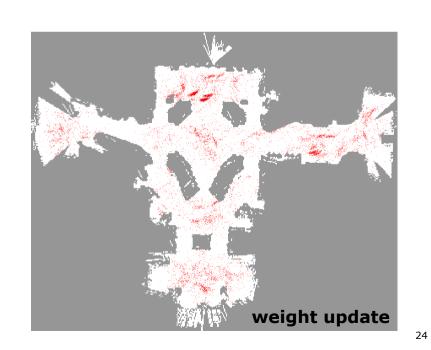


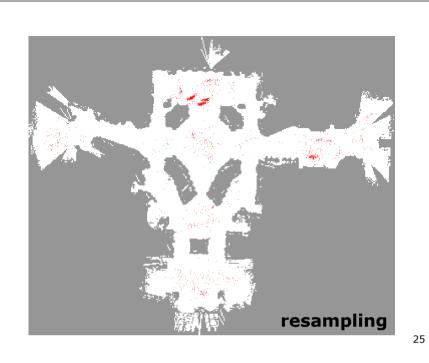


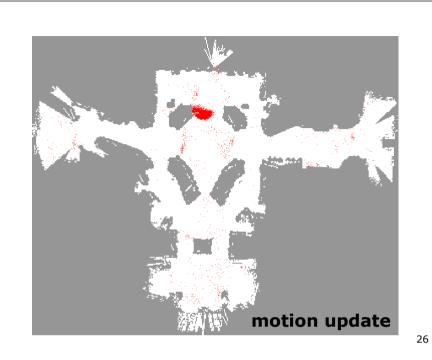




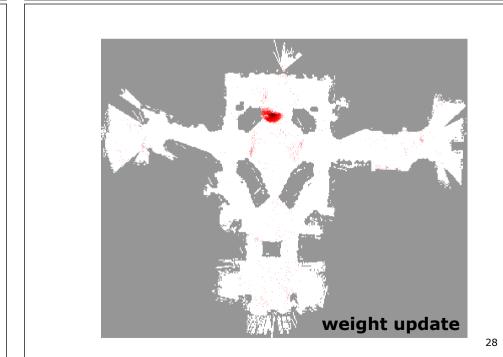


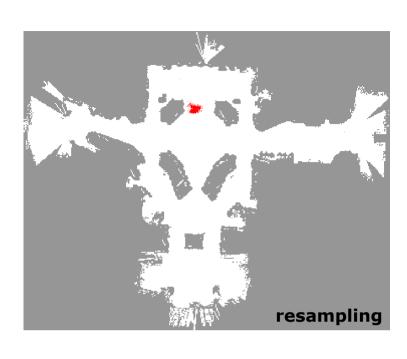


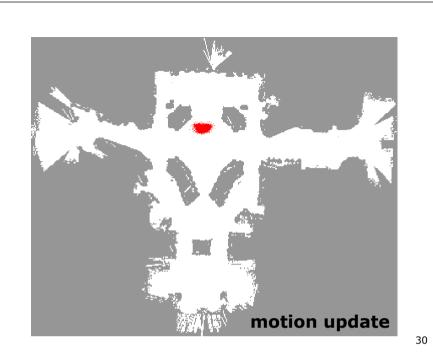


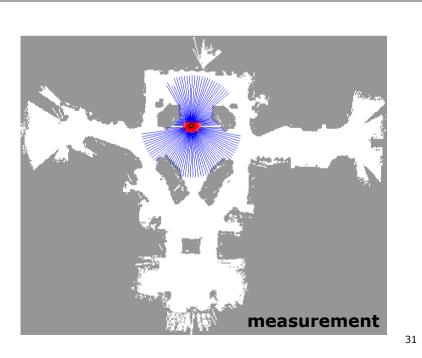


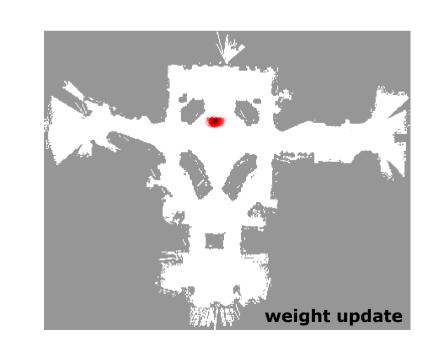
measurement

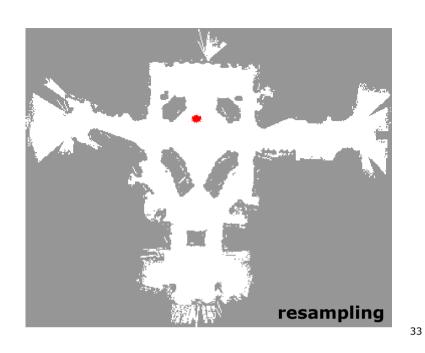


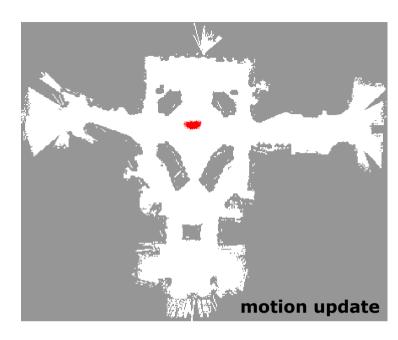




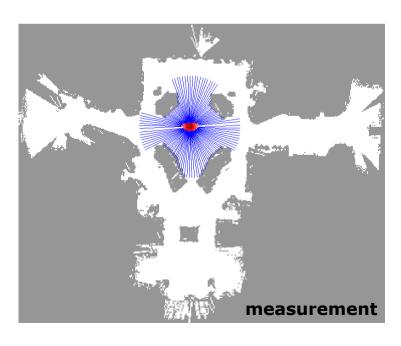








3



# **Summary - Particle Filters**

- Particle filters are non-parametric, recursive Bayes filters
- Posterior is represented by a set of weighted samples
- Proposal to draw the samples for t+1
- Weight to account for the differences between the proposal and the target
- Work well in low-dimensional spaces

### **Summary – PF Localization**

- Particles are propagated according to the motion model
- They are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- MCL is the gold standard for mobile robot localization today

#### Literature

#### **On Monte Carlo Localization**

 Thrun et al. "Probabilistic Robotics", Chapter 8.3

#### On the particle filter

Thrun et al. "Probabilistic Robotics", Chapter 3

#### On motion and observation models

 Thrun et al. "Probabilistic Robotics", Chapters 5 & 6