Robot Mapping

Short Introduction to Particle Filters and Monte Carlo Localization

Cyrill Stachniss

1

Gaussian Filters

 The Kalman filter and its variants can only model Gaussian distributions

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

2

Motivation

 Goal: approach for dealing with arbitrary distributions

Key Idea: Samples

 Use multiple samples to represent arbitrary distributions

Particle Set

Set of weighted samples

$$\mathcal{X} = \left\{\left\langle x^{[j]}, w^{[j]} \right\rangle\right\}_{j=1,\dots,J}$$
 state importance hypothesis weight

The samples represent the posterior

$$p(x) = \sum_{j=1}^{J} w^{[j]} \delta_{x[j]}(x)$$

5

Closed Form Sampling is Only Possible for a Few Distributions

• Example: Gaussian

How to sample from other distributions?

Particles for Approximation

Particles for function approximation

 The more particles fall into a region, the higher the probability of the region

How to obtain such samples?

6

Importance Sampling Principle

- We can use a different distribution g to generate samples from f
- Account for the "differences between g and f" using a weight w = f/g
- target f
- proposal g
- Pre-condition: $f(x)>0 \rightarrow g(x)>0$

Importance Sampling Principle

9

Particle Filter

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by samples
- Prediction: draw from the proposal
- Correction: weighting by the ratio of target and proposal

The more samples we use, the better is the estimate!

10

Particle Filter Algorithm

1. Sample the particles using the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

• Resampling: Draw sample i with probability $w_t^{[i]}$ and repeat J times

Particle Filter Algorithm

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):

1: \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset

2: for j = 1 to J do

3: sample x_t^{[j]} \sim \pi(x_t)

4: w_t^{[j]} = \frac{p(x_t^{[j]})}{\pi(x_t^{[j]})}

5: \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle

6: endfor

7: for j = 1 to J do

8: draw i \in 1, \ldots, J with probability \propto w_t^{[i]}

9: add x_t^{[i]} to \mathcal{X}_t

10: endfor

11: return \mathcal{X}_t
```

Monte Carlo Localization

- Each particle is a pose hypothesis
- Proposal is the motion model

$$x_t^{[j]} \sim p(x_t \mid x_{t-1}, u_t)$$

Correction via the observation model

$$w_t^{[j]} = \frac{target}{proposal} \propto p(z_t \mid x_t, m)$$

13

15

Particle Filter for Localization

```
Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
              \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
             for j = 1 to J do
                    sample x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]})

w_t^{[j]} = p(z_t \mid x_t^{[j]})
                    \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle
6:
              endfor
             for j = 1 to J do
                     draw i \in 1, \ldots, J with probability \propto w_t^{[i]}
                     add x_t^{[i]} to \mathcal{X}_t
9:
              endfor
10:
11:
              return \mathcal{X}_t
```

14

Application: Particle Filter for Localization (Known Map)

Resampling

- Draw sample i with probability $w_{\scriptscriptstyle t}^{[i]}$. Repeat 1 times.
- Informally: "Replace unlikely samples by more likely ones"
- Survival of the fittest
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number. of samples

Resampling

- Roulette wheel
- Binary search
- O(J log J)

- Stochastic universal sampling
- Low variance
- O(J)

17

Low Variance Resampling

```
Low_variance_resampling(\mathcal{X}_t, \mathcal{W}_t):
          \bar{\mathcal{X}}_t = \emptyset
1:
          r = \operatorname{rand}(0; J^{-1})
          c = w_t^{[1]}
3:
         i = 1
          for j = 1 to J do
               U = r + (j-1)J^{-1}
               while U > c
                    i = i + 1
                    c = c + w_t^{[i]}
               end while
10:
               add x_t^{[i]} to \bar{\mathcal{X}}_t
11:
12:
          end for
13:
          return \bar{\mathcal{X}}_t
```


measurement

3

Summary - Particle Filters

- Particle filters are non-parametric, recursive Bayes filters
- Posterior is represented by a set of weighted samples
- Proposal to draw the samples for t+1
- Weight to account for the differences between the proposal and the target
- Work well in low-dimensional spaces

Summary – PF Localization

- Particles are propagated according to the motion model
- They are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- MCL is the gold standard for mobile robot localization today

Literature

On Monte Carlo Localization

 Thrun et al. "Probabilistic Robotics", Chapter 8.3

On the particle filter

Thrun et al. "Probabilistic Robotics", Chapter 3

On motion and observation models

 Thrun et al. "Probabilistic Robotics", Chapters 5 & 6