Robot Mapping

FastSLAM – Feature-Based SLAM with Particle Filters

Cyrill Stachniss

1

3

Particle Filter

- Non-parametric recursive Bayes filter
- Posterior is represented by a set of weighted samples
- Can model arbitrary distributions
- Works well in low-dimensional spaces
- 3-Step procedure
 - Sampling from proposal
 - Importance Weighting
 - Resampling

2

Particle Filter Algorithm

1. Sample the particles from the proposal distribution

$$x_t^{[j]} \sim \pi(x_t \mid \ldots)$$

2. Compute the importance weights

$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

3. Resampling: Draw sample i with probability $w_t^{[i]}$ and repeat J times

Particle Representation

A set of weighted samples

$$\mathcal{X} = \left\{ \left\langle x^{[i]}, w^{[i]} \right\rangle \right\}_{i=1,\dots,N}$$

- Think of a sample as one hypothesis about the state
- For feature-based SLAM:

$$x = (x_{1:t}, \frac{m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y}}{\text{landmarks}})^T$$

_

Dimensionality Problem

Particle filters are effective in low dimensional spaces as the likely regions of the state space need to be covered with samples.

$$x = (x_{1:t}, m_{1,x}, m_{1,y}, \dots, m_{M,x}, m_{M,y})^T$$

high-dimensional

5

7

Can We Exploit Dependencies
Between the Different
Dimensions of the State Space?

$$x_{1:t}, m_1, \ldots, m_M$$

6

If We Know the Poses of the Robot, Mapping is Easy!

$$\frac{x_{1:t}, m_1, \ldots, m_M}{}$$

Key Idea

$$\frac{x_{1:t}, m_1, \ldots, m_M}{}$$

If we use the particle set only to model the robot's path, each sample is a path hypothesis. For each sample, we can compute an individual map of landmarks.

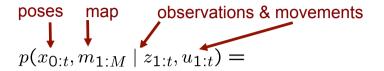
Rao-Blackwellization

 Factorization to exploit dependencies between variables:

$$p(a,b) = p(b \mid a) p(a)$$

• If $p(b \mid a)$ can be computed efficiently, represent only p(a) with samples and compute $p(b \mid a)$ for every sample Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

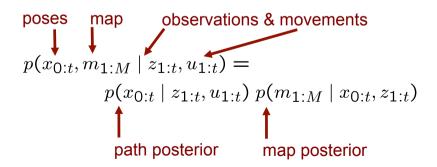


First introduced for SLAM by Murphy in 1999

10

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior



Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

$$p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) = p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t})$$

How to compute this term efficiently?

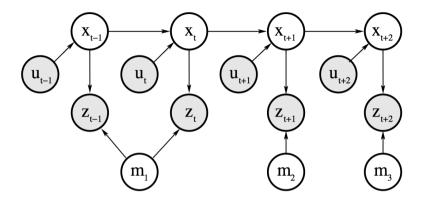
First introduced for SLAM by Murphy in 1999

9

11

First introduced for SLAM by Murphy in 1999

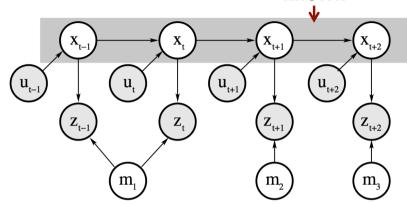
Revisit the Graphical Model



13

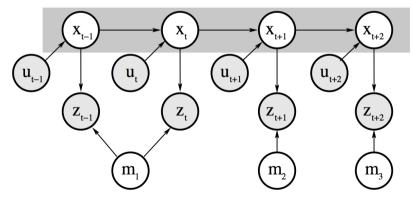
Revisit the Graphical Model

known



14

Landmarks are Conditionally Independent Given the Poses



Landmark variables are all disconnected (i.e. independent) given the robot's path

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

$$p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) = p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t})$$

Landmarks are conditionally independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

$$p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) =$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) p(m_{1:M} \mid x_{0:t}, z_{1:t})$$

$$p(x_{0:t} \mid z_{1:t}, u_{1:t}) \prod_{i=1}^{M} p(m_i \mid x_{0:t}, z_{1:t})$$

First exploited in FastSLAM by Montemerlo et al., 2002

17

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

$$\begin{split} p(x_{0:t}, m_{1:M} \mid z_{1:t}, u_{1:t}) &= \\ p(x_{0:t} \mid z_{1:t}, u_{1:t}) & p(m_{1:M} \mid x_{0:t}, z_{1:t}) \\ & \underbrace{\frac{p(x_{0:t} \mid z_{1:t}, u_{1:t})}{\text{\int}}}_{\text{particle filter similar to MCL}} p(m_{i} \mid x_{0:t}, z_{1:t}) \end{split}$$

2-dimensional EKFs!

First exploited in FastSLAM by Montemerlo et al., 2002

19

Rao-Blackwellization for SLAM

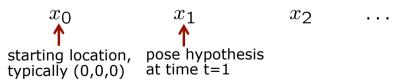
Factorization of the SLAM posterior

First exploited in FastSLAM by Montemerlo et al., 2002

18

Modeling the Robot's Path

- Sample-based representation for $p(x_{0:t} \mid z_{1:t}, u_{1:t})$
- Each sample is a path hypothesis



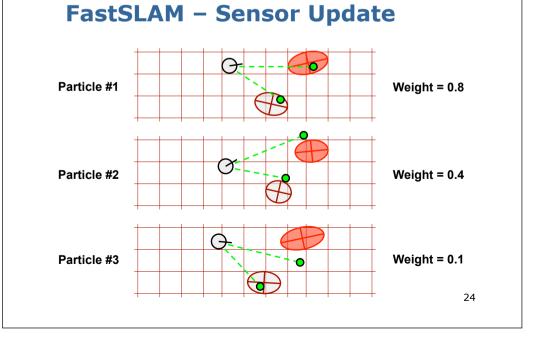
- Past poses of a sample are not revised
- No need to maintain past poses in the sample set

FastSLAM

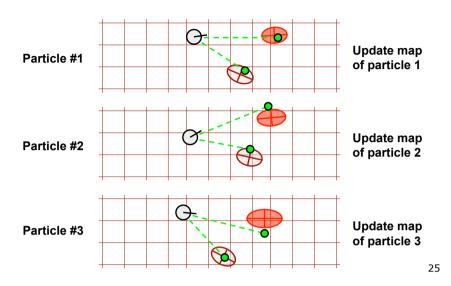
- Proposed by Montemerlo et al. in 2002
- Each landmark is represented by a 2x2 EKF
- Each particle therefore has to maintain M individual EKFs

Particle #2 Particle #3 Landmark 1 2x2 EKF Landmark 2 2x2 EKF

Particle #2 Particle #3 Particle #3 Particle #3



FastSLAM - Sensor Update



Key Steps of FastSLAM 1.0

 Extend the path posterior by sampling a new pose for each sample

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

• Compute particle weight $w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \, \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} \, (z_t - \hat{z}^{[k]})\right\}$

measurement covariance

- Update belief of observed landmarks (EKF update rule)
- Resample

26

FastSLAM 1.0 - Part 1

```
1: FastSLAM1.0_known_correspondence(z_t, c_t, u_t, \mathcal{X}_{t-1}):
2: for k = 1 to N do // loop over all particles
3: Let \left\langle x_{t-1}^{[k]}, \left\langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \right\rangle, \ldots \right\rangle be particle k in \mathcal{X}_{t-1}
4: x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t) // sample pose
```

FastSLAM 1.0 - Part 1

FastSLAM 1.0 - Part 2

```
11:
                          \langle \mu_{i,t}^{[k]}, \Sigma_{i,t}^{[k]} \rangle = EKF\text{-}Update(\dots) // update landmark
12:
                         w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} (z_t - \hat{z}^{[k]})\right\}
13:
 measurement cov. \overset{\cdot}{Q}=H\;\Sigma_{i,t-1}^{[k]}\;H^T+Q_t exp. observation
                      endif
14:
                      for all unobserved features j' do
15:
                          \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \Sigma_{j',t-1}^{[k]} \rangle
                                                                                      // leave unchanged
16:
17:
               end for
18:
              \mathcal{X}_t = \text{resample}\left(\left\langle x_t^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \right\rangle, \dots, w^{[k]} \right\rangle_{k=1,\dots,N}\right)
20:
               return \mathcal{X}_t
```

29

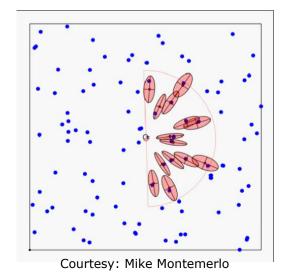
31

FastSLAM 1.0 - Part 2 (long)

```
12:
                                                                             // measurement prediction
                                                                             // calculate Jacobian
<sup>14:</sup>update
                                                                             // measurement covariance
                                                                             // calculate Kalman gain
16:
                                                                             // update mean
17:
                                                                              // update covariance
18:
                                                 Q^{-1}(z_t - \hat{z}^{[k]}) // importance factor
19:
                   for all unobserved features j' do
                  \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \Sigma_{j',t-1}^{[k]} \rangle endfor
21:
                                                                           // leave unchanged
23:
24:
             endfor
             \mathcal{X}_t = \text{resample}\left(\left\langle x_t^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \right\rangle, \dots, w^{[k]} \right\rangle_{k-1}, N\right)
26:
             return \mathcal{X}_t
```

30

FastSLAM in Action



The Weight is a Result From the Importance Sampling Principle

- Importance weight is given by the ratio of target and proposal in $x^{[k]}$
- See: importance sampling principle

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

The Importance Weight

The target distribution is

$$p(x_{1:t} \mid z_{1:t}, u_{1:t})$$

The proposal distribution is

$$p(x_{1:t} \mid z_{1:t-1}, u_{1:t})$$

Proposal is used step-by-step

$$p(x_{1:t} \mid z_{1:t-1}, u_{1:t}) = \underbrace{p(x_t \mid x_{t-1}, u_t)}_{\text{from } \mathcal{X}_{t-1} \text{ to } \bar{\mathcal{X}}_t} \underbrace{p(x_{1:t-1} \mid z_{1:t-1}, u_{1:t-1})}_{\mathcal{X}_{t-1}}$$

The Importance Weight

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

$$= \frac{p(x_{1:t}^{[k]} \mid z_{1:t}, u_{1:t})}{p(x_t^{[k]} \mid x_{t-1}, u_t) \ p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

34

The Importance Weight

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

$$= \frac{p(x_{1:t}^{[k]} \mid z_{1:t}, u_{1:t})}{p(x_t^{[k]} \mid x_{t-1}, u_{t-1})}$$

Bayes rule + factorization

The Importance Weight

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

$$= \frac{p(x_{1:t}^{[k]} \mid z_{1:t}, u_{1:t})}{p(x_{t}^{[k]} \mid x_{t-1}, u_{t}) p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

$$= \frac{\eta p(z_{t} \mid x_{1:t}^{[k]}, z_{1:t-1}) p(x_{t} \mid x_{t-1}^{[k]}, u_{t})}{p(x_{t}^{[k]} \mid x_{t-1}^{[k]}, u_{t})}$$

$$= \frac{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

The Importance Weight

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

$$= \frac{p(x_{1:t}^{[k]} \mid z_{1:t}, u_{1:t})}{p(x_t^{[k]} \mid x_{t-1}, u_t) p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

$$= \frac{\eta p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1}) p(x_t \mid x_{t-1}^{[k]}, u_t)}{p(x_t^{[k]} \mid x_{t-1}^{[k]}, u_t)}$$

$$= \frac{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

37

The Importance Weight

$$w^{[k]} = \frac{\operatorname{target}(x^{[k]})}{\operatorname{proposal}(x^{[k]})}$$

$$= \frac{p(x_{1:t}^{[k]} \mid z_{1:t}, u_{1:t})}{p(x_t^{[k]} \mid x_{t-1}, u_t) p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

$$= \frac{\eta p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1}) p(x_t \mid x_{t-1}^{[k]}, u_t)}{p(x_t^{[k]} \mid x_{t-1}^{[k]}, u_t)}$$

$$= \frac{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}{p(x_{1:t-1}^{[k]} \mid z_{1:t-1}, u_{1:t-1})}$$

$$= \eta p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1})$$

38

The Importance Weight

 Integrating over the pose of the observed landmark leads to

$$w^{[k]} = \eta \ p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1})$$

$$= \eta \int p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1}, m_j) \ p(m_j \mid x_{1:t}^{[k]}, z_{1:t-1}) \ dm_j$$

The Importance Weight

 Integrating over the pose of the observed landmark leads to

$$w^{[k]} = \eta \ p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1})$$

$$= \eta \int p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1}, m_j) \ p(m_j \mid x_{1:t}^{[k]}, z_{1:t-1}) \ dm_j$$

$$= \eta \int p(z_t \mid x_t^{[k]}, m_j) \ p(m_j \mid x_{1:t-1}^{[k]}, z_{1:t-1}) \ dm_j$$

The Importance Weight

 Integrating over the pose of the observed landmark leads to

$$w^{[k]} = \eta \ p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1})$$

$$= \eta \int p(z_t \mid x_{1:t}^{[k]}, z_{1:t-1}, m_j) \ p(m_j \mid x_{1:t}^{[k]}, z_{1:t-1}) \ dm_j$$

$$= \eta \int \underbrace{p(z_t \mid x_t^{[k]}, m_j)}_{\mathcal{N}(z_t; \hat{z}^{[k]}, Q_t)} \underbrace{p(m_j \mid x_{1:t-1}^{[k]}, z_{1:t-1})}_{\mathcal{N}(m_j; \mu_{j,t-1}^{[k]}, \Sigma_{j,t-1}^{[k]})} \ dm_j$$

41

43

The Importance Weight

This leads to

$$w^{[k]} = \eta \int \underbrace{p(m_j \mid x_{1:t-1}^{[k]}, z_{1:t-1})}_{\mathcal{N}(m_j; \mu_{j,t-1}^{[k]}, \Sigma_{j,t-1}^{[k]})} \underbrace{p(z_t \mid x_t^{[k]}, m_j)}_{\mathcal{N}(z_t; \hat{z}^{[k]}, Q_t)} dm_j$$

$$Q = H \sum_{j,t-1}^{[k]} H^T + Q_t$$

$$w^{[k]} \simeq |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} (z_t - \hat{z}^{[k]})\right\}$$

The Importance Weight

This leads to

$$w^{[k]} = \eta \int \underbrace{p(m_j \mid x_{1:t-1}^{[k]}, z_{1:t-1})}_{\mathcal{N}(m_j; \mu_{j,t-1}^{[k]}, \Sigma_{j,t-1}^{[k]})} \underbrace{p(z_t \mid x_t^{[k]}, m_j)}_{\mathcal{N}(z_t; \hat{z}^{[k]}, Q_t)} dm_j$$

$$Q = H \sum_{j,t-1}^{[k]} H^T + Q_t$$

measurement covariance (pose uncertainty of the landmark estimate plus measurement noise)

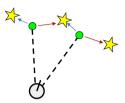
42

FastSLAM 1.0 - Part 2

```
11:
                              \langle \mu_{i,t}^{[k]}, \Sigma_{i,t}^{[k]} \rangle = EKF\text{-}Update(\dots) // update landmark
12:
                             w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}^{[k]})^T Q^{-1} (z_t - \hat{z}^{[k]})\right\}
13:
                         endif
14:
15:
                         for all unobserved features i' do
                              \langle \mu_{j',t}^{[k]}, \Sigma_{j',t}^{[k]} \rangle = \langle \mu_{j',t-1}^{[k]}, \tilde{\Sigma_{j',t-1}^{[k]}} \rangle \qquad // \text{ leave unchanged}
16:
17:
18:
                  endfor
                \mathcal{X}_t = \text{resample}\left(\left\langle x_t^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \right\rangle, \dots, w^{[k]} \right\rangle_{k=1,\dots,N}\right)
19:
20:
                  return \mathcal{X}_t
```

Data Association Problem

• Which observation belongs to which landmark?

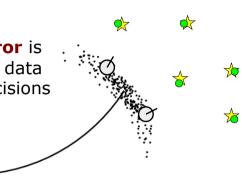


- More than one possible association
- Potential data associations depend on the pose of the robot

Particles Support for Multi-Hypotheses Data Association

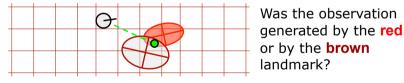
 Decisions on a perparticle basis

 Robot pose error is factored out of data association decisions



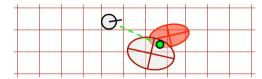
46

Per-Particle Data Association



P(observation|red) = 0.3 P(observation|brown) = 0.7

Per-Particle Data Association



Was the observation generated by the **red** or by the **brown** landmark?

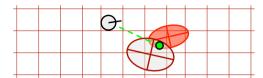
P(observation|red) = 0.3

P(observation|brown) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick an random association weighted by the observation likelihoods
- If the probability for an assignment is too low, generate a new landmark

47

Per-Particle Data Association



Was the observation generated by the **red** or by the **brown** landmark?

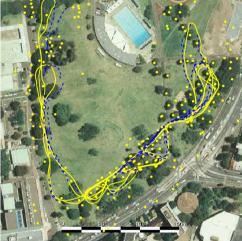
- Multi-modal belief
- Pose error is factored out of data association decisions
- Simple but effective data association
- Big advantage of FastSLAM over EKF

49

51

Results - Victoria Park

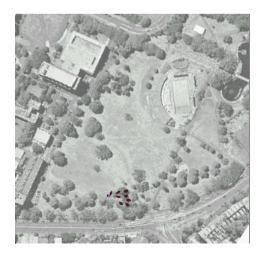
- 4 km traverse
- < 2.5 m RMS position error
- 100 particles



Blue = GPS Yellow = FastSLAM

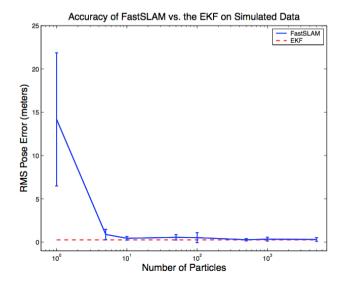
50

Results – Victoria Park (Video)

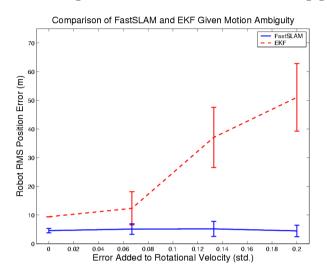


Courtesy: Mike Montemerlo

Results (Sample Size)



Results (Motion Uncertainty)



FastSLAM 1.0 Summary

- Use a particle filter to model the belief
- Factors the SLAM posterior into lowdimensional estimation problems
- Model only the robot's path by sampling
- Compute the landmarks given the path
- Per-particle data association
- No robot pose uncertainty in the perparticle data association

53

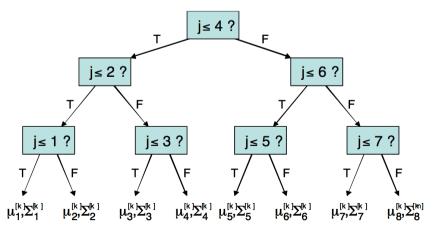
55

FastSLAM Complexity – Simple Implementation

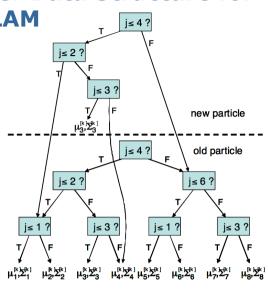
- Update robot particles $\mathcal{O}(N)$ based on the control
- Incorporate an observation $\mathcal{O}(N)$ into the Kalman filters
- ullet Resample particle set $\mathcal{O}(NM)$

N = Number of particles M = Number of map features $\mathcal{O}(NM)$

A Better Data Structure for FastSLAM



A Better Data Structure for FastSLAM



57

59

FastSLAM Complexity

 Update robot particles based on the control $\mathcal{O}(N)$

• Incorporate an observation $\mathcal{O}(N\log M)$ into the Kalman filters

Resample particle set

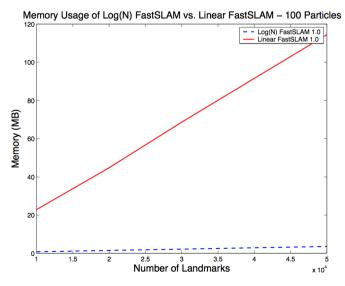
 $\mathcal{O}(N\log M)$

N = Number of particlesM = Number of map features

 $\overline{\mathcal{O}(N\log M)}$

58

Memory Complexity



FastSLAM 1.0

 FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

• Is there a better distribution to sample from?

FastSLAM 1.0 to FastSLAM 2.0

 FastSLAM 1.0 uses the motion model as the proposal distribution

$$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$$

- FastSLAM 2.0 considers also the measurements during sampling
- Especially useful if an accurate sensor is used (compared to the motion noise)

[Montemerlo et al., 2003] 61

FastSLAM 2.0 (Informally)

FastSLAM 2.0 samples from

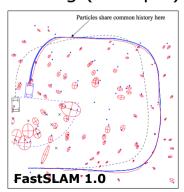
$$x_t^{[k]} \sim p(x_t \mid x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

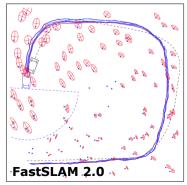
- Results in a more peaked proposal distribution
- Less particles are required
- More robust and accurate
- But more complex...

[Montemerlo et al., 2003] 62

FastSLAM Problems

- How to determine the sample size?
- Particle deprivation, especially when closing (multiple) loops





FastSLAM Summary

- Particle filter-based SLAM
- Rao-Blackwellization: model the robot's path by sampling and compute the landmarks given the poses
- Allow for per-particle data association
- FastSLAM 1.0 and 2.0 differ in the proposal distribution
- Complexity $\mathcal{O}(N \log M)$

FastSLAM Results

- Scales well (1 million+ features)
- Robust to ambiguities in the data association
- Advantages compared to the classical EKF approach (especially with nonlinearities)

Literature

FastSLAM

- Thrun et al.: "Probabilistic Robotics", Chapter 13.1-13.3 + 13.8 (see errata!)
- Montemerlo, Thrun, Kollar, Wegbreit: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem, 2002
- Montemerlo and Thrun: Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM, 2003

65