Robot Mapping

FastSLAM - Feature-Based SLAM
with Particle Filters
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Particle Filter

= Non-parametric recursive Bayes filter

= Posterior is represented by a set of
weighted samples

= Can model arbitrary distributions
= Works well in low-dimensional spaces

= 3-Step procedure
= Sampling from proposal
= Importance Weighting
= Resampling



Particle Filter Algorithm

1. Sample the particles from the
proposal distribution
a:,[gﬂ ~ (x| ...
2. Compute the importance weights

ta'rget(:vgj])

w,@j] — 7]
proposal(x;’")

3. Resampling: Draw sample 7 with
probability wf’]and repeat J times



Particle Representation

= A set of weighted samples

.....

= Think of a sample as one hypothesis
about the state

» For feature-based SLAM:

_ T
T = (T1:4,M1 2, M1y - MMz MM y)

poses landmarks




Dimensionality Problem

Particle filters are effective in low
dimensional spaces as the likely
regions of the state space need to
be covered with samples.

_ T
T = (T1:46M14, M1 g5+ MM 2, MM )
high-dimensional



Can We Exploit Dependencies
Between the Different
Dimensions of the State Space?

L1, TN, -« TN



If We Know the Poses of the
Robot, Mapping is Easy!

L1, TN, -« TN

_/



Key Idea
L1, N7, -« TS

/

If we use the particle set only to model
the robot’s path, each sample is a path
hypothesis. For each sample, we can
compute an individual map of landmarks.




Rao-Blackwellization

= Factorization to exploit dependencies
between variables:

p(a,b) = p(b|a)p(a)

= If p(b| a) can be computed efficiently,
represent only p(a) with samples
and compute p(b | a) for every sample



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

p(fEO:tamle | Zl:taul:t) —

First introduced for SLAM by Murphy in 1999
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Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

Vv /S

p(fEO:tamle | Zl:taul:t) —
p(CUO:t | Zl:taulit) p(ml:M | xOItazlit)

T T

path posterior map posterior

First introduced for SLAM by Murphy in 1999



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

P(To:t, M1 07 | 2104, ULE) =
p(wO:t ‘ Zl:taulit) p(ml:M ‘ xOZtazlit)

/

How to compute this term efficiently?

First introduced for SLAM by Murphy in 1999 12



Revisit the Graphical Model
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Revisit the Graphical Model
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Landmarks are Conditionally
Independent Given the Poses

Landmark variables are all disconnected

(i.e. independent) given the robot’s path .



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(CEO:taml:M ‘ Zl:taulit) —
p(wO:t | Zl:taulit) p(ml:M ‘ ZUO:tazl:t)

/

Landmarks are conditionally
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002 16



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(fﬂo:tamle | Zl:taul:t) —

p(CUO:t ‘ Zl:t/“l:t) p(mle | CIfO:ztazlzt)
M

p(x0:¢ | 2104, Ul:t) H p(m; | 0t 21:¢)
1=1

First exploited in FastSLAM by Montemerlo et al., 2002 17



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(fﬂo:tamle | Zl:taul:t) —
p(CUO:t ‘ Zl:taulzt) p(mle ‘ C130:15721:75)

M
p(x0:¢ | 2104, Ul:t) H p(m; | 0t 21:¢)
=1 —_—

/

2-dimensional EKFs!
First exploited in FastSLAM by Montemerlo et al., 2002 18



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(fﬂo:tamle | Zl:taul:t) —

p(CUO:t ‘ Zl:taulzt) p(mle ‘ C130:15721:75)
M

p(x0:¢ | 2104, Ul:t) H p(m; | 0t 21:¢)
particle filter similar to MCL /

2-dimensional EKFs!
First exploited in FastSLAM by Montemerlo et al., 2002 19



Modeling the Robot’s Path

= Sample-based representation for
p(xo:¢ | 21:4,U1:t)
= Each sample is a path hypothesis

L0 L1 L2

1 1

starting location, pose hypothesis
typically (0,0,0) attime t=1

= Past poses of a sample are not revised

= No need to maintain past poses in the
sample set
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FastSLAM

= Proposed by Montemerlo et al. in 2002
= Fach landmark is represented by a 2x2 EKF

= Each particle therefore has to maintain M
individual EKFs

Particle
1

8
<
SS

Landmark 1 | Landmark 2 Landmark M

Particl
ar2|c © x,Y, v, Landmark 1 | Landmark 2 Landmark M
Particle
N xr,vYy, v Landmark 1 | Landmark 2 Landmark M
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FastSLAM - Action Update

Landmark 1
(> ‘ 2x2 EKF
Particle #1 iy
Q B Landmark 2
2x2 EKF
Particle #2 (3, Py
ND,
Particle #3
J
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FastSLAM - Sensor Update

) Landmark 1
(A - |- - ‘ 2x2 EKF
Particle #1
Landmark 2
2x2 EKF
Particle #2 (31 ~ =+~

Particle #3 S R Es)
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FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

\

\

I

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

o

-€

Update map
of particle 1

Update map
of particle 2

Update map
of particle 3
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Key Steps of FastSLAM 1.0

= Extend the path posterior by sampling
a hew pose for each sample

2~ pla | oy, w)

= Compute particle weight ~ * °bsei"a“°“
wll = [27Q[ 7% exp {—4 (2 — 2M)TQ7! (2 — 211}
1

measurement covariance
= Update belief of observed landmarks
(EKF update rule)

= Resample

26



FastSLAM 1.0 - Part 1

1: FastSLAM1.0_known_correspondence(z;, ¢, U, Xi—1):

2: for k=1 to N do // loop over all particles
3: Let <x£k_]1, <,u[1k,15_1, E[ﬂ_l> - > be particle k in X;_1

4: 2~ p(wy | xL’ﬂl, Ut) // sample pose




FastSLAM 1.0 - Part 1

1: FastSLAM1.0_known_correspondence(z;, ¢, U, Xi—1):

2: for k=1 to N do // loop over all particles
3: Let <x£k_]1, <,u[1k,15_1, E[ﬂ_1> - > be particle k in X;_1
L LIH ]
- e~ (@ | 2y, u) // sample pose
5: j=c // observed feature
6: if feature j never seen before
7 Hgkg = h™ (2, xl[tk]) // initialize mean
8: H = h'(u?ﬂ, CC?]) // calculate Jacobian
9: Eﬁ =H 'Q, (H H" // initialize covariance
10: w = pg // default importance weight
11: else




FastSLAM 1.0 - Part 2

11: else

12: (/JJE 2,2[,]> EKF—Update( .)  // update landmark
1

13: = |27TQ|_5 exp {—5(27; —sEhTO™t (2, — é[k])}

1

measurement cov. ) =H W . HT +@Q; exp. observation

7,t—
14: endif
15: for all unobserved features j' do
16: (u[,]t, E[lf]t> = (/L[’f]t . E[If]t ) // leave unchanged
17: endfor
18: endfor
19: X; = resample (<$£k], <,u[1kl, E[lk1> e ,w[k]>

’ ’ k=1,...,N

20: return X

t
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FastSLAM 1.0 - Part 2 (long)

11: else
12: // measurement prediction
13: EKE // calculate Jacobian
14:upd ate // measurement covariance
15: // calculate Kalman gain
16: // update mean
17: // update covariance
18:
19: endif
20: for all unobserved features j' do
21: (,u[lf]t, Z[k] L) = <u£’f!t_1, Zg’f!t_1> // leave unchanged
23: endfor
24: endfor
25: X = resample << [F] <,u[1kl, Z[1k15> you ,w[k]> )
’ k=1,...,N
26: return X}
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FastSLAM iIn Action
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Courtesy: Mike Montemerlo
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The Weight is a Result From the
Importance Sampling Principle

= Importance weight is given by the
ratio of target and proposal in z !

= See: importance sampling principle

(k] _ target(z!*))
~ proposal(xlkl)

32



The Importance Weight
= The target distribution is

p('rlzt ‘ Zl:taulzt)
= The proposal distribution is
p(xlzt ‘ Zl:t—laulzt)

= Proposal is used step-by-step

P(xu | Z1:t—1,u1:t)

— P(ﬂft \ mt—laut) p(mlzt—l \ Zl:t—laulzt—l)
—— —,.—
from X;_1 to X Xi—1
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The Importance Weight

k] target(x[k])
w p—
proposal(z*l)

p(x[lk}ﬁ ‘ Zl:tvul:t)
- k] k]
p(i'?t \ xt—laut) p(l’l;t_l ! Zl:t—laulzt—l)
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The Importance Weight

{ t (K]
i 1 arget(z!™)

proposal(z!#l)

k
p(x[ll ‘ Z1:ts ul:t)

k k
p(@y[s | | 1 ]u) p(x£;1_1 | 2141, UL:t—1)

Bayes rule + factorization
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The Importance Weight

[k] o target (.ZC [k] )
W —
proposal(zl*)
_ ( [1 ‘ <1:ts UT: t)
p(; \xt 1,ut) p(2 | 21, urie—1)
[k
B n p(2t | 331 tazlt 1) p(xy | oy ]17ut)
— =
play” | 2 ue)
k
p($[1;1]g_1 Zl:t—laulzt—l)
k]
p(xl;t_l Zl:t—lyulzt—l)




The Importance Weight

target(x!*)

k] _
’ proposal(zl*l)
p(aj[l Jﬁ ‘ <1:ty U’1°t)
Pl i1, w) p(x[l | 211, urg—1)
_ 1 p(zt | x[lﬂ,zlzt_l) p(zy -2 Lk—]p’tﬁ)
- GEn -
p( “4 Wt—laut)
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The Importance Weight

target(x!*)
proposal(zl*l)

p(xy,

Wk

Z1:ts ul't)

’Z’lt 1, Ul:t— 1)
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The Importance Weight

= Integrating over the pose of the
observed landmark leads to

wl

k]

k
1] p(zt | :C[ln]ﬁa Zl:t—l)

k
[ ptee |28 2, m) ol | o

k]

tr<~l:t—1

) dm;;
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The Importance Weight

= Integrating over the pose of the
observed landmark leads to

40



The Importance Weight

= Integrating over the pose of the
observed landmark leads to
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The Importance Weight
= This leads to

k k
_ n/p<mjrx£1 ) ple [l my) dm,

NG

Wl

./\f(mj ,u N (24 Z[k Q)

K] T /
Q_HZN  H + Qy

1

measurement covariance (pose uncertainty of
the landmark estimate plus measurement noise)
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The Importance Weight
= This leads to

wlF] k]

NG

N (m ;! sy N (z; Z[k Q)

Jtljtl /

Q= Hzﬁ1£ﬂ+Q

*\\\\:\\\\$

wFl ~ 127Q|7F exp {—§(zt — 3ENTQ=1 (2, — z“ﬂ)}

k
_ njﬁw%Malpmtu p(et | 2t my) dm,
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FastSLAM 1.0 - Part 2

11: else
12: (,uﬁ, Zﬁ) = EKF-Update(...) // update landmark
13:
14: endif
15: for all unobserved features j' do
16: (ug.’f],t, Eglf]t> = <,u£.]7],t_1, Z;’f],tﬂ) // leave unchanged
17: endfor
18: endfor
19: X; = resample (<$£k], <,u[1kl, E[lk1> e ,w[k]>
’ ’ k=1,...,N
20: return X
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Data Association Problem

= Which observation belongs to which

landmark?

X%\,/x%\

T
1 /

| /

1, 7/

&

= More than one possible association

= Potential data associations
depend on the pose of the robot

45



Particles Support for Multi-
Hypotheses Data Association

= Decisions on a per- 8
particle basis

= Robot pose erroris . -,
factored out of data = - »(:2 & o
association decisions

46



Per-Particle Data Association

Gl

Was the observation

N

generated by the red
or by the brown

.

7

landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

47



Per-Particle Data Association

- Was the observation
T — generated by the red
' or by the brown
\ 7 landmark?

P(observation|red) = 0.3  P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match

= Pick an random association weighted by
the observation likelihoods

= If the probability for an assignment is too low,
generate a new landmark

48



Per-Particle Data Association

Gl

~

C .

= Multi-modal belief

Was the observation
generated by the red

or by the brown
landmark?

» Pose error is factored out of data

association decisions

= Simple but effective data association
= Big advantage of FastSLAM over EKF

49



Results — Victoria Park

» 4 km traverse

= < 2.5 mRMS
position error

= 100 particles

Blue = GPS L BAS
= FastSLAM .« . 65D T A
Courtesy: Mike Montemerlo 50
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Results - Victoria Park (Video)

Courtesy: Mike Montemerlo
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Results (Sample Size)

Accuracy of FastSLAM vs. the EKF on Simulated Data
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Results (Motion Uncertainty)

Comparison of FastSLAM and EKF Given Motion Ambiguity
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FastSLAM 1.0 Summary

= Use a particle filter to model the belief

= Factors the SLAM posterior into low-
dimensional estimation problems

= Model only the robot’s path by
sampling

= Compute the landmarks given the path

= Per-particle data association

= No robot pose uncertainty in the per-
particle data association
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FastSLAM Complexity - Simple
Implementation

= Update robot particles O(N)
based on the control

= Incorporate an observation (O(N)
into the Kalman filters

= Resample particle set O(NM)

N = Number of particles O(NM)
M = Number of map features

55



A Better Data Structure for
FastSLAM

j=4?

j=27? j<6 ?

T F T F

j=37? j=57? j=77?

ANANANAT

!"'1a o MQ, ] P«3,]2[k] !-"4, 4 M;, ! MG, | M7, 5! Mga
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A Better Data Structure for
FastSLAM =47

new particle

old particle

TIPSR TI S TTAD ST ST TVl ST ST 8
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FastSLAM Complexity

= Update robot particles O(N)
based on the control

= Incorporate an observation O(N log M)
into the Kalman filters

= Resample particle set O(N log M)

N = Number of particles O(N log M)

M = Number of map features

58



Memory Complexity

Memory Usage of Log(N) FastSLAM VS. Lmear FastSLAM — 100 Particles
120

-- Log(N) FastSLAM1 0 |
—— Linear FastSLAM 1.0

100

80

60

Memory (MB)

40

20

1 1.5 2 2.5 3 3.5 4 45 5
Number of Landmarks x 10*



FastSLAM 1.0

= FastSLAM 1.0 uses the motion model
as the proposal distribution

%]

k
v~ play | 2y w)

» Is there a better distribution to
sample from?

[Montemerlo et al., 2002] 60



FastSLAM 1.0 to FastSLAM 2.0

= FastSLAM 1.0 uses the motion model
as the proposal distribution

%]

k
v~ play | 2y w)

» FastSLAM 2.0 considers also the
measurements during sampling

= Especially useful if an accurate sensor
is used (compared to the motion
noise)

[Montemerlo et al., 2003] 61



FastSLAM 2.0 (Informally)
= FastSLAM 2.0 samples from
5’71[51{] ~ p(xt \ 513[1]3]5_1&1:15,21:15)

= Results in a more peaked proposal
distribution

= | ess particles are required
= More robust and accurate
= But more complex...

[Montemerlo et al., 2003] 62



FastSLAM Problems

= How to determine the sample size?

= Particle deprivation, especially when
closing (multiple) loops

Particles share common history here

‘FastSLAM 2.0 .. °




FastSLAM Summary

= Particle filter-based SLAM

= Rao-Blackwellization: model the
robot’s path by sampling and compute
the landmarks given the poses

= Allow for per-particle data association

= FastSLAM 1.0 and 2.0 differ in the
proposal distribution

= Complexity O(N log M)
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FastSLAM Results

= Scales well (1 million+ features)

= Robust to ambiguities in the data
association

= Advantages compared to the classical
EKF approach (especially with non-
linearities)
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