Robot Mapping

Grid-Based FastSLAM
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Motivation

= So far, we addressed landmark-based
SLAM (KF-based SLAM, FastSLAM)

= We learned how to build grid maps
assuming “known poses”

Today: SLAM for building grid maps

Courtesy: Dirk Hahnel

Observation

= Assuming known poses fails!

Questions

= Can we solve the SLAM problem if no
pre-defined landmarks are available?

= Can we use the ideas of FastSLAM to
build grid maps?




Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior
poses map observations & movements

|

p(fBO ity M | 21:t, ULt

First introduced for SLAM by Murphy in 1999

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

|

P(-’BO t, T | Z1:t, ULt
= P($O:t | Zl:taulit) p(m ‘ wl:tazlit)

I I

path posterior map posterior
(particle filter) (given the path)

First introduced for SLAM by Murphy in 1999

Grid-Based SLAM

= As with landmarks, the map depends
on the poses of the robot during data
acquisition

= If the poses are known, grid-based
mapping is easy (“mapping with
known poses”)

A Graphical Model for Grid-
Based SLAM
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters

= Each particle represents a possible
trajectory of the robot

= Each particle maintains its own map

= Each particle updates it upon
“mapping with known poses”

Particle Filter Example

Performance of Grid-Based
FastSLAM 1.0

Problem

= Too many samples are needed to
sufficiently model the motion noise

= Increasing the number of samples is
difficult as each map is quite large

= Idea: Improve the pose estimate
before applying the particle filter
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Pose Correction Using Scan-
Matching

Maximize the likelihood of the current
pose and map relative to the previous
pose and map

Ty = argmax {p(Zt | 2¢,mi—1) p(ay | Utﬂf—l)}
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current measurement robot motion

map constructed so far
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Motion Model for Scan Matching

1o - Raw Odometry
Scan Matching

Courtesy: Dirk Hahnel 14

Mapping using Scan Matching

Courtesy: Dirk Hahnel
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Grid-Based FastSLAM with
Improved Odometry

= Scan-matching provides a locally
consistent pose correction

= Pre-correct short odometry sequences
using scan-matching and use them as
input to FastSLAM

= Fewer particles are needed, since the
error in the input in smaller

[Hahnel et al., 2003] 16




Graphical Model for Mapping
with Improved Odometry
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Grid-Based FastSLAM with
Scan-Matching
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Courtesy:
Dirk Hahnel
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Grid-Based FastSLAM with
Scan-Matching

Courtesy:

Dirk Hahnel 19

Loop Closure

Grid-Based FastSLAM with
Scan-Matching

Courtesy:
Dirk Hahnel
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Summary so far ...

= Approach to SLAM that combines scan
matching and FastSLAM

= Scan matching to generate virtual
‘high quality’” motion commands

= Can be seen as an ad-hoc solution to
an improved proposal distribution
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What' s Next?

= Compute an improved proposal that
considers the most recent observation
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Goals:
= More precise sampling
= More accurate maps

= Less particles needed
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The Optimal Proposal
Distribution (aruampalam et al., 01]
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution

7(z4)
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How to sample from this term?

Gaussian approximation:

Gaussian Proposal Distribution
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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Improved Proposal

= The proposal adapts to the structure
of the environment

(a) (b) ()
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Resampling

= Resampling at each step limits the
“memory” of our filter

= Suppose we loose each time 25% of
the particles, this may lead to:

R

= Goal: Reduce the resampling actions
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Selective Resampling

= Resampling is necessary to achieve
convergence

= Resampling is dangerous, since
important samples might get lost
(“particle depletion”)

= Resampling makes only sense if
particle weights differ significantly

= Key question: When to resample?
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Number of Effective Particles

= Empirical measure of how well the
target distribution is approximated by
samples drawn from the proposal
1

Meff = N2
= (of)
= Neff describes “the inverse variance of
the normalized particle weights”

= For equal weights, the sample
approximation is close to the target
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Resampling with Neff
= If our approximation is close to the

target, no resampling is needed

= We only resample when Neff drops
below a given threshold (N/2)

= Note: weights need to be normalized

[Doucet, ' 98; Arulampalam, '01]
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Typical Evolution of 7n.¢
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Intel Lab

47

= 30 particles
= 250x250m?2

= 1.75 km
(odometry)

= 30cm resolution
in final map
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MIT Killian Court

» The “infinite-corridor-dataset” at MIT
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MIT Killian Court

o f
I

Pl

Ll

|

}rLr,:: L i o \
N —

MIT Killian Court - Vldeo

51

Real World Application

= This guy uses a similar technique...




Problems of Gaussian Proposals

= Gaussians are uni-model distributions
= In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02

0.01
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Gaussian or Non-Gaussian?

= Statistical test to check whether or not
sample a generated from a Gaussian

= Anderson-Darling test (based on the
cumulative density function)

» Difference between the Gaussian and
the optimal proposal via KLD
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Is a Gaussian an Accurate
Choice for the Proposal?

Dataset Gauss | Non- Multi-
Gauss; | modal
1 mode| —
Intel Research Lab || 89.2% | 7.2% /'3.6%\
FHW Museum 845% | 10.4% [ 5.1% \
Belgioioso 84.0% | 10.4% || 5.6%
MIT CSAIL 78.1% | 15.9% | 6.0%
MIT Killian Court || 75.1% | 19.1% |\ 5.8% |
Freiburg Bldg. 79 | 74.0% | 19.4% |\ 6.6% /
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Problems of Gaussian Proposals

= Multi-modal likelihood function can
cause filter divergence
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Efficient Multi-Modal Sampling

= Approximate the likelihood in a better way!

mode 1

@_o
°%
odometry odometry with uncertainty

= Sample from odometry first and the use
this as the start point for scan matching
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The Two-Step Sampling Works!

likelihood

...with nearly zero overhead
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Proposal Error Evaluation
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Effect of Two-Step Sampling

= Allows for better modeling multi-modal
likelihood functions (high KLD values
do not occur)

= For uni-modal cases, identical results
= Minimal computational overhead
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Gaussian Proposal: Yes or No?

= Gaussian allow for efficient sampling
= Problematic in multi-model cases

= Laser-Based SLAM: 3-6% multi-modal
distribution (for the datasets here)

= Gaussian proposals can lead to
divergence

= Two-step sampling process overcomes
this problem effectively and efficiently
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Conclusion

= The ideas of FastSLAM can also be
applied in the context of grid maps

= Improved proposals are essential

= Similar to scan-matching on a per-
particle base

= Selective resamples reduces the risk
of particle depletion

= Substantial reduction of the required
number of particles

62

Literature

Grid-FastSLAM with Improved Proposals

= Grisetti, Stachniss, Burgard: Improved
Techniques for Grid Mapping with Rao-
Blackwellized Particle Filters, 2007

= Stachniss, Giorgio, Burgard, Roy. Analyzing
Gaussian Proposal Distributions for Mapping
with Rao-Blackwellized Particle Filters, 2007

Grid-FastSLAM & Scan-Matching

= Hahnel, Burgard, Fox, Thrun. An efficient
FastSLAM Algorithm for Generating Maps of
Large-Scale Cyclic Environments from Raw

Laser Range Measurements, 2003
63

GMapping
= Efficient open source implementation

of the presented method (2005-2008)

= C++ Code available via
svn co https://svn.openslam.org/data/svn/gmapping
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