Robot Mapping

Grid-Based FastSLAM

Cyrill Stachniss

Motivation

- So far, we addressed landmark-based SLAM (KF-based SLAM, FastSLAM)
- We learned how to build grid maps assuming "known poses"

Today: SLAM for building grid maps

Mapping With Raw Odometry

Courtesy: Dirk Hähnel

Observation

• Assuming known poses fails!

Questions

- Can we solve the SLAM problem if no pre-defined landmarks are available?
- Can we use the ideas of FastSLAM to build grid maps?

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

Rao-Blackwellization for SLAM

Factorization of the SLAM posterior

First introduced for SLAM by Murphy in 1999

Grid-Based SLAM

- As with landmarks, the map depends on the poses of the robot during data acquisition
- If the poses are known, grid-based mapping is easy ("mapping with known poses")

A Graphical Model for Grid-Based SLAM

Grid-Based Mapping with Rao-Blackwellized Particle Filters

- Each particle represents a possible trajectory of the robot
- Each particle maintains its own map
- Each particle updates it upon "mapping with known poses"

Particle Filter Example

Performance of Grid-Based FastSLAM 1.0

Problem

- Too many samples are needed to sufficiently model the motion noise
- Increasing the number of samples is difficult as each map is quite large
- Idea: Improve the pose estimate before applying the particle filter

Pose Correction Using Scan-Matching

Maximize the likelihood of the **current** pose and map relative to the **previous** pose and map

Motion Model for Scan Matching

Courtesy: Dirk Hähnel

Mapping using Scan Matching

Courtesy: Dirk Hähnel

Grid-Based FastSLAM with Improved Odometry

- Scan-matching provides a locally consistent pose correction
- Pre-correct short odometry sequences using scan-matching and use them as input to FastSLAM
- Fewer particles are needed, since the error in the input in smaller

Graphical Model for Mapping with Improved Odometry

Grid-Based FastSLAM with Scan-Matching

Courtesy: Dirk Hähnel

Grid-Based FastSLAM with Scan-Matching

Courtesy: Dirk Hähnel

Grid-Based FastSLAM with Scan-Matching

Courtesy: Dirk Hähnel

Summary so far ...

- Approach to SLAM that combines scan matching and FastSLAM
- Scan matching to generate virtual 'high quality' motion commands
- Can be seen as an ad-hoc solution to an improved proposal distribution

What's Next?

 Compute an improved proposal that considers the most recent observation

$$x_t^{[k]} \sim p(x_t \mid x_{1:t-1}^{[k]}, u_{1:t}, z_{1:t})$$

Goals:

- More precise sampling
- More accurate maps
- Less particles needed

The Optimal Proposal Distribution [Arulampalam et al., 01]

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) = \frac{p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)}{p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)}$$

For lasers $p(z_t \mid x_t, m^{[i]})$
is typically peaked and
dominates the product

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) = \frac{p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)}{p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)}$$

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) = \frac{p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)}{p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t)}$$

$$p(z_t \mid x_{t-1}^{[i]}, m^{[i]}, u_t) = \int p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t) dx_t$$

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t}) = \frac{p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t})}{p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t})}$$

$$p(z_{t} \mid x_{t-1}^{[i]}, m^{[i]}, u_{t}) = \int p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$p(x_{t} \mid x_{t-1}^{[i]}, m^{[i]}, z_{t}, u_{t}) = \frac{\tau(x_{t})}{\int \tau(x_{t}) dx_{t}}$$

26

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) \simeq \frac{\tau(x_t)}{\int_{\{x_t \mid \tau(x_t) > \epsilon\}} \tau(x_t) \, dx_t}$$

with
$$\tau(x_t) = p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t)$$

How to sample from this term?

Gaussian approximation: $\tau(x_t) \simeq \mathcal{N}(\mu^{[i]}, \Sigma^{[i]})$

Gaussian Proposal Distribution

Estimating the Parameters of the Gaussian for Each Particle

$$\mu^{[i]} = \frac{1}{\eta} \sum_{j=1}^{K} x_j \tau(x_j)$$

$$\Sigma^{[i]} = \frac{1}{\eta} \sum_{j=1}^{K} (x_j - \mu^{[i]}) (x_j - \mu^{[i]})^T \tau(x_j)$$

 x_j are the points sampled around the result of the scan matcher

Gaussian Proposal Distribution

$$p(x_t \mid x_{t-1}^{[i]}, m^{[i]}, z_t, u_t) \simeq \frac{\tau(x_t)}{\int_{\{x_t \mid \tau(x_t) > \epsilon\}} \tau(x_t) \, dx_t}$$

$$\tau(x_t) \simeq \mathcal{N}(\mu^{[i]}, \Sigma^{[i]}) \qquad \mu^{[i]} = \frac{1}{\eta} \sum_{j=1}^K x_j \tau(x_j)$$
$$\Sigma^{[i]} = \frac{1}{\eta} \sum_{j=1}^K (x_j - \mu^{[i]}) (x_j - \mu^{[i]})^T \tau(x_j)$$

$$\int_{\{x_t | \tau(x_t) > \epsilon\}} \tau(x_t) \, dx_t \simeq \sum_{j=1}^K \tau(x_j)$$

$$w_t^{[i]} = \frac{\operatorname{target}(x_t^{[i]})}{\operatorname{proposal}(x_t^{[i]})}$$

L

$$w_{t}^{[i]} = \frac{\operatorname{target}(x_{t}^{[i]})}{\operatorname{proposal}(x_{t}^{[i]})}$$

$$\propto \underbrace{p(z_{t} \mid m^{[i]}, x_{t}^{[i]}) p(x_{t}^{[i]} \mid x_{t-1}^{[i]}, u_{t})}{\pi(x_{t}^{[i]} \mid m^{[i]}, x_{t-1}^{[i]}, z_{t}, u_{t})}$$

$$\frac{p(x_{1:t-1}^{[i]} \mid z_{1:t-1}, u_{1:t-1})}{\pi(x_{1:t-1}^{[i]} \mid z_{1:t-1}, u_{1:t-1})}$$

35

$$\begin{split} w_t^{[i]} &= \frac{\operatorname{target}(x_t^{[i]})}{\operatorname{proposal}(x_t^{[i]})} \\ &\propto \frac{p(z_t \mid m^{[i]}, x_t^{[i]}) p(x_t^{[i]} \mid x_{t-1}^{[i]}, u_t)}{\pi(x_t^{[i]} \mid m^{[i]}, x_{t-1}^{[i]}, z_t, u_t)} \\ & \frac{p(x_{1:t-1}^{[i]} \mid z_{1:t-1}, u_{1:t-1})}{\pi(x_{1:t-1}^{[i]} \mid z_{1:t-1}, u_{1:t-1})} \\ &= \frac{p(z_t \mid m^{[i]}, x_t^{[i]}) p(x_t^{[i]} \mid x_{t-1}^{[i]}, u_t)}{\frac{p(z_t \mid m^{[i]}, x_t^{[i]}) p(x_t^{[i]} \mid x_{t-1}^{[i]}, u_t)}{\int p(z_t \mid m^{[i]}, x_t) p(x_t \mid x_{t-1}^{[i]}, u_t) dx_t}} w_{t-1}^{[i]} \\ &= w_{t-1}^{[i]} \int p(z_t \mid m^{[i]}, x_t) p(x_t \mid x_{t-1}^{[i]}, u_t) dx_t \end{split}$$

The Importance Weight

$$w_t^{[i]} = w_{t-1}^{[i]} \int p(z_t \mid x_t, m^{[i]}) \, p(x_t \mid x_{t-1}^{[i]}, u_t) \, dx_t$$

The Importance Weight

$$w_t^{[i]} = w_{t-1}^{[i]} \int p(z_t \mid x_t, m^{[i]}) p(x_t \mid x_{t-1}^{[i]}, u_t) dx_t$$

$$\simeq w_{t-1}^{[i]} \int_{\{x_t \mid \tau(x_t) > \epsilon\}} \tau(x_t) dx_t$$

The Importance Weight

$$w_{t}^{[i]} = w_{t-1}^{[i]} \int p(z_{t} \mid x_{t}, m^{[i]}) p(x_{t} \mid x_{t-1}^{[i]}, u_{t}) dx_{t}$$

$$\simeq w_{t-1}^{[i]} \int_{\{x_{t} \mid \tau(x_{t}) > \epsilon\}} \tau(x_{t}) dx_{t}$$

$$\simeq w_{t-1}^{[i]} \sum_{j=1}^{K} \tau(x_{j})$$
Already computed for the proposal!
Sampled points around the maximum of the likelihood function found by scan-matching

Improved Proposal

 The proposal adapts to the structure of the environment

Resampling

- Resampling at each step limits the "memory" of our filter
- Suppose we loose each time 25% of the particles, this may lead to:

Goal: Reduce the resampling actions

Selective Resampling

- Resampling is necessary to achieve convergence
- Resampling is dangerous, since important samples might get lost ("particle depletion")
- Resampling makes only sense if particle weights differ significantly

Key question: When to resample?

Number of Effective Particles

 Empirical measure of how well the target distribution is approximated by samples drawn from the proposal

- *n_{eff}* describes "the inverse variance of the normalized particle weights"
- For equal weights, the sample approximation is close to the target

Resampling with $n_{e\!f\!f}$

- If our approximation is close to the target, no resampling is needed
- We only resample when n_{eff} drops below a given threshold (N/2)

$$\frac{1}{\sum_{i} \left(w_{t}^{[i]} \right)^{2}} \stackrel{?}{<} N/2$$

Note: weights need to be normalized
 [Doucet, '98; Arulampalam, '01]

Typical Evolution of n_{eff}

Intel Lab

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Intel Lab

Outdoor Campus Map

- 30 particles
- 250x250m²
- 1.75 km (odometry)
- 30cm resolution in final map

MIT Killian Court

The "infinite-corridor-dataset" at MIT

MIT Killian Court

MIT Killian Court – Video

Real World Application

This guy uses a similar technique...

Problems of Gaussian Proposals

- Gaussians are uni-model distributions
- In case of loop-closures, the likelihood function might be multi-modal

Gaussian or Non-Gaussian?

- Statistical test to check whether or not sample a generated from a Gaussian
- Anderson-Darling test (based on the cumulative density function)
- Difference between the Gaussian and the optimal proposal via KLD

Is a Gaussian an Accurate Choice for the Proposal?

Dataset	Gauss	Non-	Multi-
		Gauss;	modal
		1 mode	
Intel Research Lab	89.2%	7.2%	3.6%
FHW Museum	84.5%	10.4%	5.1%
Belgioioso	84.0%	10.4%	5.6%
MIT CSAIL	78.1%	15.9%	6.0%
MIT Killian Court	75.1%	19.1%	5.8%
Freiburg Bldg. 79	74.0%	19.4%	6.6%

Problems of Gaussian Proposals

 Multi-modal likelihood function can cause filter divergence

Efficient Multi-Modal Sampling

Approximate the likelihood in a better way!

 Sample from odometry first and the use this as the start point for scan matching

The Two-Step Sampling Works!

Proposal Error Evaluation

Effect of Two-Step Sampling

- Allows for better modeling multi-modal likelihood functions (high KLD values do not occur)
- For uni-modal cases, identical results
- Minimal computational overhead

Gaussian Proposal: Yes or No?

- Gaussian allow for efficient sampling
- Problematic in multi-model cases
- Laser-Based SLAM: 3-6% multi-modal distribution (for the datasets here)
- Gaussian proposals can lead to divergence
- Two-step sampling process overcomes this problem effectively and efficiently

Conclusion

- The ideas of FastSLAM can also be applied in the context of grid maps
- Improved proposals are essential
- Similar to scan-matching on a perparticle base
- Selective resamples reduces the risk of particle depletion
- Substantial reduction of the required number of particles

Literature

Grid-FastSLAM with Improved Proposals

- Grisetti, Stachniss, Burgard: Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, 2007
- Stachniss, Giorgio, Burgard, Roy. Analyzing Gaussian Proposal Distributions for Mapping with Rao-Blackwellized Particle Filters, 2007

Grid-FastSLAM & Scan-Matching

 Hähnel, Burgard, Fox, Thrun. An efficient FastSLAM Algorithm for Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range Measurements, 2003

GMapping

- Efficient open source implementation of the presented method (2005-2008)
- C++ Code available via svn co https://svn.openslam.org/data/svn/gmapping