Robot Mapping

Grid-Based FastSLAM
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Motivation

= So far, we addressed landmark-based
SLAM (KF-based SLAM, FastSLAM)

= We |learned how to build grid maps
assuming “known poses”

Today: SLAM for building grid maps



Mapping With Raw Odometry

Courtesy: Dirk Hahnel



Observation

= Assuming known poses fails!

Questions

= Can we solve the SLAM problem if no
pre-defined landmarks are available?

= Can we use the ideas of FastSLAM to
build grid maps?



Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observatlons & movements
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First introduced for SLAM by Murphy in 1999



Rao-Blackwellization for SLAM
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Grid-Based SLAM

= As with landmarks, the map depends
on the poses of the robot during data
acquisition

= If the poses are known, grid-based
mapping is easy ("mapping with
known poses”™)



A Graphical Model for Grid-
Based SLAM
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Grid-Based Mapping with Rao-
Blackwellized Particle Filters

= Each particle represents a possible
trajectory of the robot

= Fach particle maintains its own map

= Each particle updates it upon
“mapping with known poses”




Particle Filter Example

map of particle 2 7
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Performance of Grid-Based
FastSLAM 1.0




Problem

= Too many samples are needed to
sufficiently model the motion noise

= Increasing the number of samples is
difficult as each map is quite large

= Idea: Improve the pose estimate
before applying the particle filter
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Pose Correction Using Scan-
Matching

Maximize the likelihood of the current
pose and map relative to the previous
pose and map

r{ = argmax {P(Zt | ¢, me—1) (¢ | Utaﬂff—ﬂ}

/ /

current measurement robot motion

map constructed so far
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Motion Model for Scan Matching
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Mapping using Scan Matching

Courtesy: Dirk Hahnel
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Grid-Based FastSLAM with
Improved Odometry

= Scan-matching provides a locally
consistent pose correction

= Pre-correct short odometry sequences

using scan-matching and use them as
input to FastSLAM

= Fewer particles are needed, since the
error in the input in smaller

[Hahnel et al., 2003] 16



Graphical Model for Mapping
with Improved Odometry
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Grid-Based FastSLAM with
Scan-Matching

Courtesy:
Dirk Hahnel
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Grid-Based FastSLAM with
Scan-Matching

Courtesy:
Dirk Hahnel

Loop Closure
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Grid-Based FastSLAM with
Scan- Matchlng
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Summary so far ...

= Approach to SLAM that combines scan
matching and FastSLAM

= Scan matching to generate virtual
‘high quality” motion commands

= Can be seen as an ad-hoc solution to
an improved proposal distribution
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What' s Next?

= Compute an improved proposal that
considers the most recent observation

k k
‘CBI[S | ™~ p(ajt ‘ Ig_;z]ﬁ—]jullt?Zl:t)
Goals:
= More precise sampling
= More accurate maps
= | ess particles needed
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The Optimal Proposal
Distribution [Arulampalam et al., 01]
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution
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Proposal Distribution

How to sample from this term?

Gaussian approximation:
T(e) ~ N (ut, $)

29



Gaussian Proposal Distribution
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Estimating the Parameters of
the Gaussian for Each Particle
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Gaussian Proposal Distribution
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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The Importance Weight
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Improved Proposal

= The proposal adapts to the structure
of the environment

(a)
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Resampling

= Resampling at each step limits the
“memory” of our filter

= Suppose we loose each time 25% of
the particles, this may lead to:

—

= Goal: Reduce the resampling actions
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Selective Resampling

= Resampling is necessary to achieve
convergence

= Resampling is dangerous, since
important samples might get lost
(“particle depletion”)

= Resampling makes only sense if
particle weights differ significantly

= Key question: When to resample?

42



Number of Effective Particles

= Empirical measure of how well the
target distribution is approximated by

samples drawn from the proposal
1

Teff = 2
D i (w£2]>
= Neff describes “the inverse variance of
the normalized particle weights”

= For equal weights, the sample
approximation is close to the target
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Resampling with Mo ff

= If our approximation is close to the
target, no resampling is needed

= We only resample when Neff drops
below a given threshold (IN/2)

1

D (w?)

= Note: weights need to be normalized
[Doucet, '98; Arulampalam, "01]
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Typical Evolution of 7.4

. ag = A e T e T
visiting new - — (NN
areas closing the

7st loop \

visiting
known areas

second loop closure 4




Intel Lab
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= 15 particles

= four times faster
than real-time
P4, 2.8GHz

= 5cm resolution
during scan
matching

= 1cm resolution in
final map



Intel Lab
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Outdoor Campus Map

= 30 particles
= 250x250m?

= 1.75 km
(odometry)

= 30cm resolution
in final map
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MIT Killian Court

* The “infinite-corridor-dataset”
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Ian Court
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MIT Killian Court — Video
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Real World Application

= This guy uses a similar technique...




Problems of Gaussian Proposals

= Gaussians are uni-model distributions

= In case of loop-closures, the likelihood
function might be multi-modal

likelihood
0.02 r

0.01
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Gaussian or Non-Gaussian?

= Statistical test to check whether or not
sample a generated from a Gaussian

= Anderson-Darling test (based on the
cumulative density function)

» Difference between the Gaussian and
the optimal proposal via KLD
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Is a Gaussian an Accurate

Choice for the Proposal?

Dataset Gauss | Non- Multi-
Gauss; | modal
1 mode| —
Intel Research Lab | 89.2% | 7.2% |/3.6%\
FHW Museum 84.5% | 10.4% [ 5.1%
Belgioioso 84.0% | 10.4% || 5.6%
MIT CSAIL 78.1% | 15.9% 1| 6.0%
MIT Killian Court | 75.1% | 19.1% \ 5.8%
Freiburg Bldg. 79 || 74.0% | 19.4% \ 6.6% /
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Problems of Gaussian Proposals

= Multi-modal likelihood function can
cause filter divergence
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Efficient Multi-Modal Sampling

= Approximate the likelihood in a better way!

odometry odometry with uncertainty

= Sample from odometry first and the use
this as the start point for scan matching
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The Two-Step Sampling Works!

likelihood
0.02 r

0.01
0 =

18.5
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Proposal Error Evaluation
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Effect of Two-Step Sampling

= Allows for better modeling multi-modal
likelihood functions (high KLD values
do not occur)

= For uni-modal cases, identical results
= Minimal computational overhead
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Gaussian Proposal: Yes or No?

= Gaussian allow for efficient sampling
= Problematic in multi-model cases

= | aser-Based SLAM: 3-6% multi-modal
distribution (for the datasets here)

= Gaussian proposals can lead to
divergence

= Two-step sampling process overcomes
this problem effectively and efficiently
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Conclusion

= The ideas of FastSLAM can also be
applied in the context of grid maps

= Improved proposals are essential

= Similar to scan-matching on a per-
particle base

= Selective resamples reduces the risk
of particle depletion

= Substantial reduction of the required
number of particles
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GMapping

= Efficient open source implementation
of the presented method (2005-2008)

= C++ Code available via
svn co https://svn.openslam.org/data/svn/gmapping
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