Least Squares in General
- Approach for computing a solution for an **overdetermined system**
- “More equations than unknowns”
- Minimizes the **sum of the squared errors** in the equations
- Standard approach to a large set of problems

Least Squares History
- Method developed by Carl Friedrich Gauss in 1795 (he was 18 years old)
- First showcase: predicting the future location of the asteroid Ceres in 1801

Courtesy: Astronomische Nachrichten, 1828
Problem

- Given a system described by a set of n observation functions $\{f_i(x)\}_{i=1:n}$
- Let
 - x be the state vector
 - z_i be a measurement of the state x
 - $\hat{z}_i = f_i(x)$ be a function which maps x to a predicted measurement \hat{z}_i
- Given n noisy measurements $z_1:n$ about the state x

Goal: Estimate the state x which best explains the measurements $z_1:n$

Graphical Explanation

- $f_1(x) = \hat{z}_1$
- $f_2(x) = \hat{z}_2$
- \vdots
- $f_n(x) = \hat{z}_n$

Example

- x position of 3D features
- z_i coordinates of the 3D features projected on camera images
- Estimate the most likely 3D position of the features based on the image projections (given the camera poses)

Error Function

- Error e_i is typically the difference between the predicted and actual measurement
 $$ e_i(x) = z_i - f_i(x) $$
- We assume that the error has zero mean and is normally distributed
- Gaussian error with information matrix Ω_i
- The squared error of a measurement depends only on the state and is a scalar
 $$ e_i(x) = e_i(x)^T \Omega_i e_i(x) $$
Goal: Find the Minimum

- Find the state x^* which minimizes the error given all measurements

$$
x^* = \arg\min_x F(x) = \arg\min_x \sum_i e_i(x)
$$

Goal: Find the Minimum

- Find the state x^* which minimizes the error given all measurements

$$
x^* = \arg\min_x \sum_i e_i(x)^T \Omega_i e_i(x)
$$

- A general solution is to derive the global error function and find its nulls
- In general complex and no closed form solution

Numerical approaches

Assumption

- A “good” initial guess is available
- The error functions are “smooth” in the neighborhood of the (hopefully global) minima
- Then, we can solve the problem by iterative local linearizations

Solve Via Iterative Local Linearizations

- Linearize the error terms around the current solution/initial guess
- Compute the first derivative of the squared error function
- Set it to zero and solve linear system
- Obtain the new state (that is hopefully closer to the minimum)
- Iterate
Linearizing the Error Function

- Approximate the error functions around an initial guess \(x \) via Taylor expansion:
 \[
 e_i(x + \Delta x) \approx e_i(x) + J_i(x)\Delta x
 \]

- Reminder: Jacobian
 \[
 J_f(x) = \begin{pmatrix}
 \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\
 \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \cdots & \frac{\partial f_2(x)}{\partial x_n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \cdots & \frac{\partial f_m(x)}{\partial x_n}
 \end{pmatrix}
 \]

Squared Error

- With the previous linearization, we can fix \(\mathbf{x} \) and carry out the minimization in the increments \(\Delta \mathbf{x} \).
- We replace the Taylor expansion in the squared error terms:
 \[
 e_i(x + \Delta x) = \ldots
 \]

Squared Error (cont.)

- All summands are scalar so the transposition has no effect.
- By grouping similar terms, we obtain:
 \[
 e_i(x + \Delta x) \approx e_i^T \Omega_i e_i + e_i^T \Omega_i J_i \Delta x + \Delta x^T J_i^T \Omega_i e_i + \\
 \Delta x^T J_i^T \Omega_i J_i \Delta x \\
 = c_i + 2b_i^T \Delta x + \Delta x^T H_i \Delta x
 \]
Global Error

- The global error is the sum of the squared errors terms corresponding to the individual measurements
- Form a new expression which approximates the global error in the neighborhood of the current solution x

$$F(x + \Delta x) \simeq \sum_i \left(c_i + b_i^T \Delta x + \Delta x^T H_i \Delta x \right)$$

$$= \sum_i c_i + 2 \left(\sum_i b_i^T \right) \Delta x + \Delta x^T \left(\sum_i H_i \right) \Delta x$$

Quadratic Form

- We can write the global error terms as a quadratic form in Δx

$$F(x + \Delta x) \simeq c + 2b^T \Delta x + \Delta x^T H \Delta x$$

- We need to compute the derivative of $F(x + \Delta x)$ w.r.t. Δx (given x)

Global Error (cont.)

$$F(x + \Delta x) \simeq \sum_i \left(c_i + b_i^T \Delta x + \Delta x^T H_i \Delta x \right)$$

$$= \sum_i c_i + 2 \left(\sum_i b_i^T \right) \Delta x + \Delta x^T \left(\sum_i H_i \right) \Delta x$$

$$= c + 2b^T \Delta x + \Delta x^T H \Delta x$$

with

$$b^T = \sum_i e_i^T \Omega_i J_i$$

$$H = \sum_i J_i^T \Omega J_i$$

Deriving a Quadratic Form

- Assume a quadratic form

$$f(x) = x^T H x + b^T x$$

- The first derivative is

$$\frac{\partial f}{\partial x} = (H + H^T)x + b$$

See: The Matrix Cookbook, Section 2.2.4
Quadratic Form

- We can write the global error terms as a quadratic form in Δx
 \[F(x + \Delta x) \simeq c + 2b^T \Delta x + \Delta x^T H \Delta x \]
- The derivative of the approximated $F(x + \Delta x)$ w.r.t. Δx is then:
 \[\frac{\partial F(x + \Delta x)}{\partial \Delta x} \simeq 2b + 2H \Delta x \]

Minimizing the Quadratic Form

- Derivative of $F(x + \Delta x)$
 \[\frac{\partial F(x + \Delta x)}{\partial \Delta x} \simeq 2b + 2H \Delta x \]
- Setting it to zero leads to
 \[0 = 2b + 2H \Delta x \]
- Which leads to the linear system
 \[H \Delta x = -b \]
- The solution for the increment Δx^* is
 \[\Delta x^* = -H^{-1}b \]

Gauss-Newton Solution

Iterate the following steps:

- Linearize around x and compute for each measurement
 \[e_i(x + \Delta x) \simeq e_i(x) + J_i \Delta x \]
- Compute the terms for the linear system
 \[b^T = \sum_i e_i^T \Omega_i J_i \quad H = \sum_i J_i^T \Omega_i J_i \]
- Solve the linear system
 \[\Delta x^* = -H^{-1}b \]
- Updating state $x \leftarrow x + \Delta x^*$

Example: Odometry Calibration

- Odometry measurements u_i
- Eliminate systematic error through calibration
- Assumption: Ground truth odometry u_i^* is available
- Ground truth by motion capture, scan-matching, or a SLAM system
Example: Odometry Calibration

- There is a function $f_i(x)$ which, given some bias parameters x, returns an unbiased (corrected) odometry for the reading u_i as follows:

$$u'_i = f_i(x) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} u_i$$

- To obtain the correction function $f(x)$, we need to find the parameters x.

Odometry Calibration (cont.)

- The state vector is:

$$x = \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ x_{23} \\ x_{31} \\ x_{32} \\ x_{33} \end{pmatrix}^T$$

- The error function is:

$$e_i(x) = u_i^* - \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ x_{23} \\ x_{31} \\ x_{32} \\ x_{33} \end{pmatrix} u_i$$

- Its derivative is:

$$J_i = \frac{\partial e_i(x)}{\partial x} = \begin{pmatrix} u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \\ u_{i,x} & u_{i,y} & u_{i,\theta} \end{pmatrix}$$

Does not depend on x, why? What are the consequences?

Questions

- How do the parameters look like if the odometry is perfect?
- How many measurements (at least) are needed to find a solution for the calibration problem?
- H is symmetric. Why?
- How does the structure of the measurement function affects the structure of H?

How to Efficiently Solve the Linear System?

- Linear system $H \Delta x = -b$
- Can be solved by matrix inversion (in theory)
- In practice:
 - Cholesky factorization
 - QR decomposition
 - Iterative methods such as conjugate gradients (for large systems)
Cholesky Decomposition for Solving a Linear System

- A symmetric and positive definite
- System to solve \(Ax = b \)
- Cholesky leads to \(A = LL^T \) with \(L \) being a lower triangular matrix
- Solve first
 \[Ly = b \]
- then
 \[L^T x = y \]

Gauss-Newton Summary

Method to minimize a squared error:

- Start with an initial guess
- Linearize the individual error functions
- This leads to a quadratic form
- One obtains a linear system by setting its derivative to zero
- Solving the linear systems leads to a state update
- Iterate

Relation to Probabilistic State Estimation

- So far, we minimized an error function
- How does this relate to state estimation in the probabilistic sense?

General State Estimation

- Bayes rule, independence and Markov assumptions allow us to write

\[
p(x_{0:t} | z_{1:t}, u_{1:t}) = \eta \ p(x_0) \ \prod_t \ [p(x_t | x_{t-1}, u_t) \ p(z_t | x_t)]
\]
Log Likelihood

- Written as the log likelihood, leads to

$$\log p(x_{0:t} \mid z_{1:t}, u_{1:t})$$

$$= \text{const.} + \log p(x_0)$$

$$+ \sum_t \left[\log p(x_t \mid x_{t-1}, u_t) + \log p(z_t \mid x_t) \right]$$

Gaussian Assumption

- Assuming Gaussian distributions

$$\log p(x_{0:t} \mid z_{1:t}, u_{1:t})$$

$$= \text{const.} + \log p(x_0)$$

$$+ \sum_t \left[\log p(x_t \mid x_{t-1}, u_t) + \log p(z_t \mid x_t) \right]$$

Log of a Gaussian

- Log likelihood of a Gaussian

$$\log \mathcal{N}(x, \mu, \Sigma)$$

$$= \text{const.} - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

Error Function as Exponent

- Log likelihood of a Gaussian

$$\log \mathcal{N}(x, \mu, \Sigma)$$

$$= \text{const.} - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

$$\begin{align*}
&= \text{const.} - \frac{1}{2} \left((x - \mu)^T \Omega^{-1} (x - \mu) \right) \\
&= \text{const.} - \frac{1}{2} \left(e^T(x) \Omega e(x) \right) \\
&= \text{const.} - \frac{1}{2} \left(e(x) \right)
\end{align*}$$

- is up to a constant equivalent to the error functions used before
Log Likelihood with Error Terms

- Assuming Gaussian distributions

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) \\
= \text{const.} - \frac{1}{2} e_p(x) - \frac{1}{2} \sum_t \left[e_{u_t}(x) + e_{z_t}(x) \right]
\]

Maximizing the Log Likelihood

- Assuming Gaussian distributions

\[
\log p(x_{0:t} \mid z_{1:t}, u_{1:t}) \\
= \text{const.} - \frac{1}{2} e_p(x) - \frac{1}{2} \sum_t \left[e_{u_t}(x) + e_{z_t}(x) \right]
\]

- Maximizing the log likelihood leads to

\[
\argmax \log p(x_{0:t} \mid z_{1:t}, u_{1:t}) \\
= \argmin e_p(x) + \sum_t \left[e_{u_t}(x) + e_{z_t}(x) \right]
\]

Minimizing the Squared Error is Equivalent to Maximizing the Log Likelihood of Independent Gaussian Distributions

with individual error terms for the motions, measurements, and prior:

\[
\argmax \log p(x_{0:t} \mid z_{1:t}, u_{1:t}) \\
= \argmin e_p(x) + \sum_t \left[e_{u_t}(x) + e_{z_t}(x) \right]
\]

Summary

- Technique to minimize squared error functions
- Gauss-Newton is an iterative approach for non-linear problems
- Uses linearization (approximation!)
- Equivalent to maximizing the log likelihood of independent Gaussians
- Popular method in a lot of disciplines
Literature

Least Squares and Gauss-Newton
- Basically every textbook on numeric calculus or optimization
- Wikipedia (for a brief summary)

Relation to Probability Theory
- Thrun et al.: “Probabilistic Robotics”, Chapter 11.4