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Three Main SLAM Paradigms

Kalman Particle | Graph-
filter filter based
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least squares
approach to SLAM

Least Squares in General

= Approach for computing a solution for
an overdetermined system

= “"More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Least Squares History

= Method developed by Carl
Friedrich Gauss in 1795
(he was 18 years old)

= First showcase: predicting
the future location of the .
asteroid Ceres in 1801 Courtesy:

Astronomische
Nachrichten, 1828




Problem

= Given a system described by a set of n
observation functions { f;(x)}i=1:n

= Let
* X be the state vector
= Z; be a measurement of the state X
= Z; = f;(x) be a function which maps X to a

predicted measurement Z;

*= Given n noisy measurements zi-,, about

the state x
m) Goal: Estimate the state X which bests

explains the measurements zq-,,

Graphical Explanation

fix) =7, Z1

L fo(x) = 2o )
§

fn(x) = 2n Zn

state predicted real

(unknown) measurements| | measurements

Example
f1(x) =71 z1
e Jo(x) = 2o zo
§ ..
fn(x) - 2’rL Zn

» X position of 3D features

= Z; coordinates of the 3D features projected
on camera images

= Estimate the most likely 3D position of the
features based on the image projections
(given the camera poses)

Error Function

= Error €; is typically the difference between
the predicted and actual measurement

e(x) = z;— fi(x)

= We assume that the error has zero mean
and is normally distributed

» Gaussian error with information matrix €2;

= The squared error of a measurement
depends only on the state and is a scalar

€; (X) = € (X)Tﬂiei (X)




Goal: Find the Minimum

= Find the state x* which minimizes the
error given all measurements

x* = argmin F(X) <7] global error (scalar)\
X

= argmin Z €; (X) «—| squared error terms (scalar) |
p'e -

(2
= arg}znin > el (x)Q;e;(x)
i

[ error terms (vector) |

Goal: Find the Minimum

= Find the state x* which minimizes the
error given all measurements

x* = arg}r{‘nin;e?(x)ﬂiei(x)

= A general solution is to derive the
global error function and find its nulls

= In general complex and no closed form
solution

=) Numerical approaches
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Assumption

= A “good” initial guess is available

= The error functions are “"smooth” in
the neighborhood of the (hopefully
global) minima

= Then, we can solve the problem by
iterative local linearizations
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Solve Via Iterative Local
Linearizations

= Linearize the error terms around the
current solution/initial guess

= Compute the first derivative of the
squared error function

= Set it to zero and solve linear system

= Obtain the new state (that is hopefully
closer to the minimum)

= Jterate
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Linearizing the Error Function

= Approximate the error functions
around an initial guess X via Taylor
expansion

e;(x+ Ax) ~ e;(x)+J;(x)Ax

eZ
= Reminder: Jacobian

Ofi(z) 9f1(x) df1(x)

or oz Oxn

0fa(x)  9fa(r) 9f2(x)

Jf(x) = 8331 89:2 Oxn
Ofm(z) Ofm(z)  Ofmlz)

oxq Oxo Oxn
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Squared Error

= With the previous linearization, we
can fix x and carry out the
minimization in the increments Ax

= We replace the Taylor expansion in
the squared error terms:

ei(x+Ax) = ...
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Squared Error

= With the previous linearization, we
can fix x and carry out the
minimization in the increments Ax

= We replace the Taylor expansion in
the squared error terms:

e;(x+ Ax) = eZT(x + Ax)Q;e;(x + Ax)
(ei + J;,Ax)TQ(e; + J;Ax)
= e/ Qe; +
eZTQiJiAx + AXTJZTQZ'GZ' +
AxTITQ,3,Ax
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Squared Error (cont.)

= All summands are scalar so the
transposition has no effect

= By grouping similar terms, we obtain:
e;(x + Ax)

o~ eZTQiei +
e,LTQlJlAX + AXTJZTQiei —I—
AxTITQ,3,Ax

= el'Qe;+2el Q,J; Ax + AxT ITQ,J; Ax
—— —— ——

¢ b7 H;
— . T Tyr.
= ¢+ 2b; Ax+ Ax" H;Ax
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Global Error

= The global error is the sum of the
squared errors terms corresponding to
the individual measurements

= Form a new expression which
approximates the global error in the
neighborhood of the current solution X

F(x+Ax) ~ > (c;+bf Ax+ Ax"H;Ax)

= Y e +20"bDHAx+ AxT (3" H;)Ax
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Global Error (cont.)

F(x+ Ax) ~ Z (ci + b,LTAX + AXTHZ'AX)

= Y g+200 b Aax+ AxT (O H)) Ax

(2 2 2
——r ———

C bl H
= c+2b7Ax+ AxTHAx

with
bT = ZGZTQZJZ
1

H = Y JlaJ,
()
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Quadratic Form

= We can write the global error terms as
a quadratic form in Ax

F(x+ Ax) ~ c+2bTAx+ AxTHAx

= We need to compute the derivative of
F(x+ Ax) w.r.t. Ax (given X)
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Deriving a Quadratic Form
= Assume a quadratic form

f(x) = x'Hx+blx
= The first derivative is

af

= (H+HDx+b
ox

See: The Matrix Cookbook, Section 2.2.4
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Quadratic Form

= We can write the global error terms as
a quadratic form in Ax

F(x+ Ax) ~ c+ obl Ax + AxTHAx

= The derivative of the approximated
F(x + Ax) w.r.t. Ax is then:

OF (x + Ax)

~ 2b 4+ 2HA
9Ax T x
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Minimizing the Quadratic Form

= Derivative of F(x + Ax)
OF (x + Ax)

0AXx
= Setting it to zero leads to

0 = 2b+2HAX
= Which leads to the linear system

~ 2b+ 2HAx

HAx = —b
= The solution for the increment Ax™ is
Ax* = —H 1p
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Gauss-Newton Solution

Iterate the following steps:

= Linearize around x and compute for
each measurement

e;(x 4+ Ax) ~ ¢;(x) + J;Ax

= Compute the terms for the linear
system b’ =" el Q,J; H=> J/'J,
7 )

= Solve the linear system
Ax* = -H b
= Updating state x «— x 4+ Ax*
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Example: Odometry Calibration

= Odometry measurements u;

= Eliminate systematic error through
calibration

= Assumption: Ground truth odometry
u; is available

= Ground truth by motion capture, scan-
matching, or a SLAM system
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Example: Odometry Calibration

= There is a function f;(x) which, given
some bias parameters X, returns a an
unbiased (corrected) odometry for the
reading u as follows

/ 11 T12 T13
u;, = fi(x) = | 201 xoo 23 | W
r31 32 33

= To obtain the correction function f(x),

we need to find the parameters x
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Odometry Calibration (cont.)

= The state vector is
T
X:<5E11 12 13 I21 T2 I23 I31 I32 3733)
= The error function is
. T11 T12 T13
e;(x) =u; — [ xo1 w2 w23 | Uy
r31 X32 33
» Its derivative is:
_ aei(x) . Uiz Uiy Ui0

Ji o —( Uiz Uiy Uig

/ Uiz Uiy ui,&)

Does not depend on x, why? What are the consequences? ] =) [ e is linear, no need to iterate! ]

Questions

= How do the parameters look like if the
odometry is perfect?

= How many measurements (at least)
are needed to find a solution for the
calibration problem?

= His symmetric. Why?

* How does the structure of the
measurement function affects the
structure of H?
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How to Efficiently Solve the
Linear System?

» Linear system HAx = -b

= Can be solved by matrix inversion
(in theory)

= In practice:
* Cholesky factorization
= QR decomposition

= [terative methods such as conjugate
gradients (for large systems)
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Cholesky Decomposition for
Solving a Linear System

= A symmetric and positive definite
= System to solve Ax = b

= Cholesky leads to A = LL” with L
being a lower triangular matrix

= Solve first
Ly = b
= an then
L'x = y
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Gauss-Newton Summary

Method to minimize a squared error:

= Start with an initial guess

= Linearize the individual error functions
= This leads to a quadratic form

= One obtains a linear system by
settings its derivative to zero

= Solving the linear systems leads to a
state update

= Jterate
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Relation to Probabilistic State
Estimation

= So far, we minimized an error function

= How does this relate to state
estimation in the probabilistic sense?
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General State Estimation

= Bayes rule, independence and Markov
assumptions allow us to write

p(ZUO:t | Zl:t?ul:t)

= np(xo) [][p(et | 2e—1,us) p(2t | )]
;
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Log Likelihood
= Written as the log likelihood, leads to

log p(if?o:t \ 21t U1:t)

= const. + log p(xg)
+) " [logp(wy | w—1,us) +log p(2t | )]
t
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Gaussian Assumption
= Assuming Gaussian distributions

log p(ll»’():t | Z1:t, U1:t)

= const. + log p(zo)
N

t N N

—|—Z log?(a:t | xt_l,ut)/—l—logp(zt | 2¢)
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Log of a Gaussian

= Log likelihood of a Gaussian
log N (z, p, X2)

1
= const. — §($ —)Ie Nz —p)
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Error Function as Exponent

= Log likelihood of a Gaussian

log N (, 1, %3)
1
= const. — 5 (z—p) T2 (x—p)
. el (x) £ e(x) )
()

= s up to a constant equivalent to the
error functions used before
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Log Likelihood with Error Terms
= Assuming Gaussian distributions
logp(xO:t ‘ Zl:taulzt)

= const. — %ep(x) — % zt: lew, (z) + e, (z)]
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Maximizing the Log Likelihood
= Assuming Gaussian distributions
log p(zo.¢ | 21. t,ul t)
= const. — —ep ——Z[eut )+ ez, (z)]
= Maximizing the log I|keI|hood leads to

argmax 10gp(55'0 it \ Z1:t, UL: t)

= argminey(z) + Z ley, (x) + e, (z)]
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Minimizing the Squared Error
is Equivalent to Maximizing the
Log Likelihood of Independent

Gaussian Distributions

with individual error terms for the
motions, measurements, and prior:

argmax log p(zo.¢ | 21.¢, U1:¢)

= argmine,(z) + Z e, () + ez, (7))
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Summary
= Technique to minimize squared error
functions

= Gauss-Newton is an iterative approach
for non-linear problems

= Uses linearization (approximation!)

= Equivalent to maximizing the log
likelihood of independent Gaussians

= Popular method in a lot of disciplines
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Literature

Least Squares and Gauss-Newton

= Basically every textbook on numeric
calculus or optimization

= Wikipedia (for a brief summary)
Relation to Probability Theory

= Thrun et al.: “"Probabilistic Robotics”,
Chapter 11.4
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