Robot Mapping

Least Squares SLAM
Revisited &
Hierarchical Approach to
Least Squares SLAM

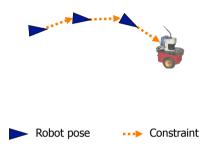
Cyrill Stachniss

1

3

Graph-Based SLAM

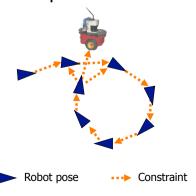
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain



2

Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses



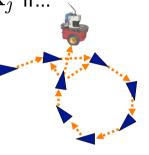
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every **node** in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

The Graph

- It consists of n nodes $x = x_{1:n}$
- Each x_i is a 2D or 3D transformation (the pose of the robot at time t_i)

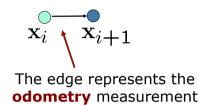
 A constraint/edge exists between the nodes x_i and x_j if...



5

Create an Edge If... (1)

- ...the robot moves from x_i to x_{i+1}
- Edge corresponds to odometry



6

Create an Edge If... (2)

...the robot observes the same part of the environment from x_i and from x_j

Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_i

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a virtual measurement about the position of x_i seen from x_i

Edge represents the position of x_i seen from \mathbf{x}_i based on the **observation**

Transformations

- Transformations can be expressed using homogenous coordinates
- Odometry-Based edge

$$(\mathbf{X}_i^{-1}\mathbf{X}_{i+1})$$

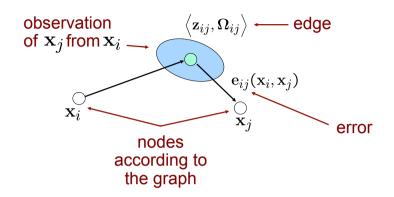
Observation-Based edge

$$(\mathbf{X}_i^{-1}\mathbf{X}_j)$$

How node i sees node j

9

Pose Graph



• Goal:
$$\mathbf{x}^* = \operatorname*{argmin} \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

10

The Error Function

• Error function for a single constraint

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\underline{\mathbf{Z}}_{ij}^{-1}(\underline{\mathbf{X}}_i^{-1}\underline{\mathbf{X}}_j))$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbf{x}_i \text{ referenced w.r.t. } \mathbf{x}_i$$

Error takes a value of zero if

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1} \mathbf{X}_j)$$

Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x}+\mathbf{\Delta}\mathbf{x})\simeq\mathbf{e}_{ij}(\mathbf{x})+\mathbf{J}_{ij}\mathbf{\Delta}\mathbf{x}$$
 with $\mathbf{J}_{ij}=rac{\partial\mathbf{e}_{ij}(\mathbf{x})}{\partial\mathbf{x}}$

13

Jacobians and Sparsity

• Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

$$e_{ij}(\mathbf{x}) = e_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

• The Jacobian will be zero everywhere except in the columns of x_i and x_j

$$\mathbf{J}_{ij} \; = \; \left[\mathbf{0} \cdots \mathbf{0} \, \, \underbrace{ egin{array}{c} \partial \mathbf{e}(\mathbf{x}_i) \ \partial \mathbf{x}_i \ A_{ij} \end{array}} \mathbf{0} \cdots \mathbf{0} \, \, \underbrace{ egin{array}{c} \partial \mathbf{e}(\mathbf{x}_j) \ \partial \mathbf{x}_j \ B_{ij} \end{array}} \mathbf{0} \cdots \mathbf{0}
ight]$$

14

Consequences of the Sparsity

 We need to compute the coefficient vector b and matrix H:

$$\mathbf{b}^T = \sum_{ij} \mathbf{b}_{ij}^T = \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$
 $\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$

- ullet The sparse structure of ${f J}_{ij}$ will result in a sparse structure of ${f H}$
- This structure reflects the adjacency matrix of the graph

Illustration of the Structure

$$\mathbf{b}_{ij} = \mathbf{J}_{ij}^T \Omega_{ij} \mathbf{e}_{ij}$$

Illustration of the Structure

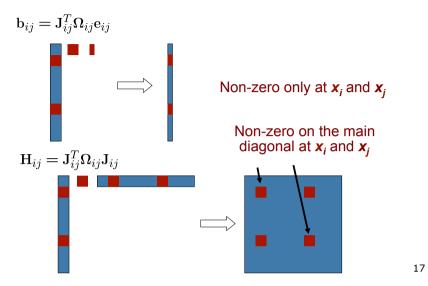


Illustration of the Structure

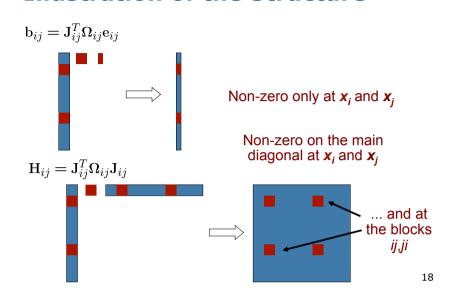
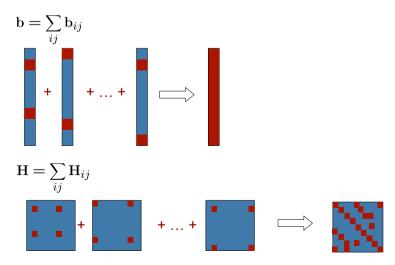


Illustration of the Structure



The Linear System

• Vector of the states increments:

$$\mathbf{\Delta}\mathbf{x}^T = \begin{pmatrix} \mathbf{\Delta}\mathbf{x}_1^T & \mathbf{\Delta}\mathbf{x}_2^T & \cdots & \mathbf{\Delta}\mathbf{x}_n^T \end{pmatrix}$$

Coefficient vector:

$$\mathbf{b}^T = \left(\ \bar{\mathbf{b}}_1^T \ \ \bar{\mathbf{b}}_2^T \ \cdots \ \bar{\mathbf{b}}_n^T \ \right)$$

System matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

Building the Linear System

For each constraint:

- Compute error $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$
- Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i}$$
 $\mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$

• Update the coefficient vector:

$$\bar{\mathbf{b}}_i^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{b}}_j^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

• Update the system matrix:

$$\bar{\mathbf{H}}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}
\bar{\mathbf{H}}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

21

Example on the Blackboard

Algorithm

```
1: optimize(x):
2: while (!converged)
3: (\mathbf{H}, \mathbf{b}) = \text{buildLinearSystem}(\mathbf{x})
4: \Delta \mathbf{x} = \text{solveSparse}(\mathbf{H}\Delta \mathbf{x} = -\mathbf{b})
5: \mathbf{x} = \mathbf{x} + \Delta \mathbf{x}
6: end
7: return \mathbf{x}
```

22

Trivial 1D Example

Two nodes and one observation

$$\mathbf{x} = (x_1 x_2)^T = (0 \, 0)$$

$$\mathbf{z}_{12} = 1$$

$$\Omega = 2$$

$$\mathbf{e}_{12} = z_{12} - (x_2 - x_1) = 1 - (0 - 0) = 1$$

$$\mathbf{J}_{12} = (1 - 1)$$

$$\mathbf{b}_{12}^T = \mathbf{e}_{12}^T \Omega_{12} \mathbf{J}_{12} = (2 - 2)$$

$$\mathbf{H}_{12} = \mathbf{J}_{12}^T \Omega \mathbf{J}_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$\Delta \mathbf{x} = -\mathbf{H}_{12}^{-1} b_{12}$$
BUT $\det(\mathbf{H}) = 0$???

What Went Wrong?

- The constraint specifies a relative constraint between both nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be "fixed"

$$\mathbf{H} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 constraint that sets
$$\mathbf{\Delta}\mathbf{x} = -\mathbf{H}^{-1}b_{12}$$

$$\mathbf{\Delta}\mathbf{x} = (0\,1)^T$$

Role of the Prior

- We saw that the matrix H has not full rank (after adding the constraints)
- The global frame had not been fixed
- Fixing the global reference frame is strongly related to the prior $p(x_0)$
- A Gaussian estimate about x₀ results in an additional constraint
- E.g., first pose in the origin:

$$e(\mathbf{x}_0) = t2v(\mathbf{X}_0)$$

26

Real World Examples

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system

29

Why Can We Simply Suppress the Rows and Columns of the Corresponding Variables?

$p(\boldsymbol{lpha}, \boldsymbol{eta}) = \mathcal{N}(\left[egin{array}{c} \boldsymbol{\mu}_{lpha} \ \boldsymbol{\mu}_{eta} \end{array} ight], \left[egin{array}{c} \Sigma_{lphalpha} \ \Sigma_{lphaeta} \ \Sigma_{etaeta} \end{array} ight]) = \mathcal{N}^{-1}(\left[egin{array}{c} \boldsymbol{\eta}_{lpha} \ \lambda_{etaeta} \ \Lambda_{etalpha} \ \Lambda_{etaeta} \end{array} ight])$			
	MARGINALIZATION	Conditioning	
	$p(oldsymbol{lpha}) = \int p(oldsymbol{lpha},oldsymbol{eta}) doldsymbol{eta}$	$poldsymbol{(lpha\midoldsymbol{eta)}}=poldsymbol{(lpha,oldsymbol{eta)}}/poldsymbol{(eta)}$	
Cov. Form	$\mu=\mu_lpha$	$\mu' = \mu_{\alpha} + \Sigma_{\alpha\beta}\Sigma_{\beta\beta}^{-1}(\beta - \mu_{\beta})$	
	$\Sigma = \Sigma_{\alpha\alpha}$	$\Sigma' = \Sigma_{\alpha\alpha} - \Sigma_{\alpha\beta} \Sigma_{\beta\beta}^{-1} \Sigma_{\beta\alpha}$	
INFO. FORM	$oldsymbol{\eta} = oldsymbol{\eta}_lpha - \Lambda_{lphaeta}\Lambda_{etaeta}^{-1}oldsymbol{\eta}_eta$	$oldsymbol{\eta}' = oldsymbol{\eta}_lpha - \Lambda_{lphaeta}oldsymbol{eta}$	
	$\Lambda = \Lambda_{\alpha\alpha} - \Lambda_{\alpha\beta}\Lambda_{\beta}$	$\Lambda' = \Lambda_{\alpha\alpha}$	

Courtesy: R. Eustice 31

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

30

Uncertainty

- H is the information matrix (given the linearization point)
- Inverting H results in a (dense) covariance matrix
- The diagonal blocks of the covariance matrix represent the (absolute) uncertainties of the corresponding variables

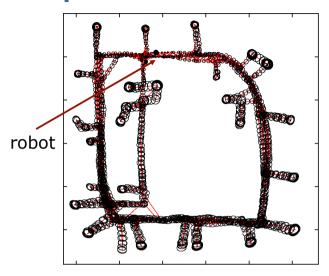
_

Relative Uncertainty

To determine the relative uncertainty between two nodes x_i and x_j :

- Construct the matrix H
- Suppress the rows and the columns of x_i (="fixes" this variable)
- Compute the block *j,j* of the inverse
- This block will contain the covariance matrix of \mathbf{x}_j w.r.t. \mathbf{x}_i , which has been fixed

Example



34

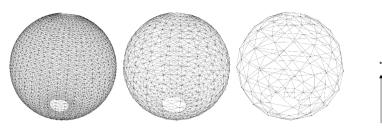
33

Does all that run online?

Does all that run online?

... it depends on the size of the graph...

Hierarchical Pose-Graph



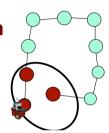
bottom layer first layer second layer top layer (input data)

"There is no need to optimize the whole graph when a new observation is obtained"

37

Motivation

- Front-end seeks for loop-closures
- Requires to compare observations to all previously obtained ones
- In practice, limit search to areas in which the robot is likely to be
- This requires to know in which parts of the graph to search for data associations



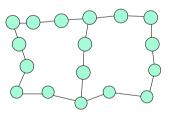
3

Hierarchical Approach

- Insight: to find loop closures, one does not need the perfect global map
- Idea: correct only the core structure of the scene, not the overall graph
- The hierarchical pose-graph is a sparse approximation of the original problem
- It exploits the facts that in SLAM
 - Robot moved through the scene and it not "teleported" to locations
 - Sensors have a limited range

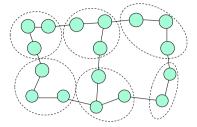
Key Idea of the Hierarchy

Input is the dense graph



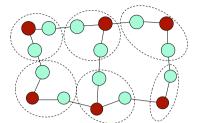
Key Idea of the Hierarchy

- Input is the dense graph
- Group the nodes of the graph based on their local connectivity



Key Idea of the Hierarchy

- Input is the dense graph
- Group the nodes of the graph based on their local connectivity
- For each group, select one node as a "representative"

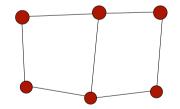


41

42

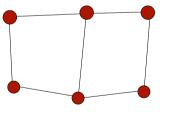
Key Idea of the Hierarchy

 The representatives are the nodes in a new sparsified graph (upper level)



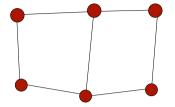
Key Idea of the Hierarchy

- The representatives are the nodes in a new sparsified graph (upper level)
- Edges of the sparse graph are determined by the connectivity of the groups of nodes
- The parameters of the sparse edges are estimated via local optimization



Key Idea of the Hierarchy

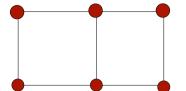
- The representatives are the nodes in a new sparsified graph (upper level)
- Edges of the sparse graph are determined by the connectivity of the groups of nodes
- The parameters of the sparse edges are estimated via local optimization



Process is repeated recursively

Key Idea of the Hierarchy

 Only the upper level of the hierarchy is optimized completely



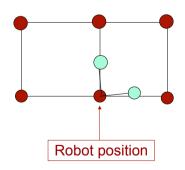
45

Construction of the Hierarchy

- When and how to generate a new group?
 - A (simple) distance-based decision
 - The first node of a new group is the representative
- When to propagate information downwards?
 - Only when there are inconsistencies
- How to construct an edge in the sparsified graph?
 - Next slides
- How to propagate information downwards?
 - Next slides

Key Idea of the Hierarchy

- Only the upper level of the hierarchy is optimized completely
- The changes are propagated to the bottom levels only close to the current robot position
- Only this part of the graph is relevant for finding constraints

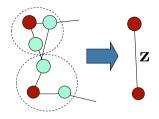


47

48

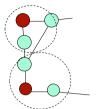
Determining Edge Parameters

- Given two connected groups
- How to compute a virtual observation Z and the information matrix Ω for the new edge?



Determining Edge Parameters

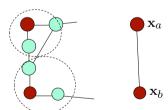
 Optimize the two subgroups jointly but independently from the rest



49

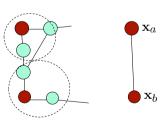
Determining Edge Parameters

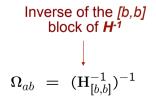
- Optimize the two subgroups jointly but independently from the rest
- The observation is the relative transformation between the two representatives



Determining Edge Parameters

- Optimize the two subgroups jointly but independently from the rest
- The observation is the relative transformation between the two representatives
- The information matrix is computed from the diagonal block of the matrix H

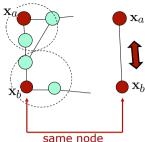




51

Propagating Information Downwards

 All representatives are nodes from the lower (bottom) level

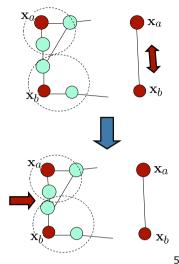


53

Propagating Information Downwards

 All representatives are nodes from the lower (bottom) level

 Information is propagated downwards by transforming the group at the lower level using a rigid body transformation



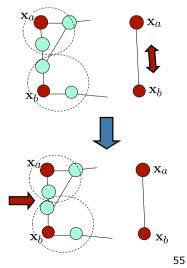
5.

Propagating Information Downwards

 All representatives are nodes from the lower (bottom) level

 Information is propagated downwards by transforming the group at the lower level using a rigid body transformation

 Only if the lower level becomes inconsistent, optimize at the lower level



For the Best Possible Map...

- Run the optimization on the lowest level (at the end)
- For offline processing with all constraints, the hierarchy helps convergence faster in case of large errors
- In this case, one pass up the tree (to construct the edges) followed by one pass down the tree is sufficient

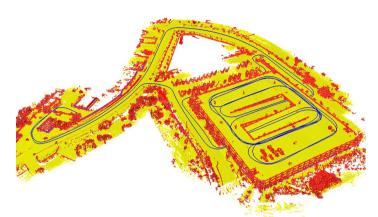
Stanford Garage

57

59

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Result

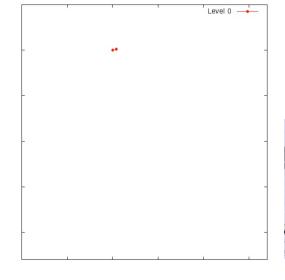


- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Video

Level 2

Intel Research Lab Video



Consistency

 How well does the top level in the hierarchy represent the original input?

61

63

Consistency

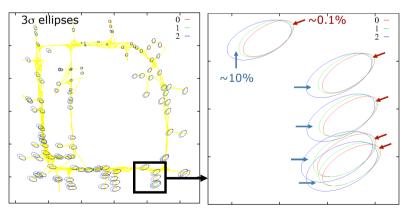
- How well does the top level in the hierarchy represent the original input?
- Probability mass of the marginal distribution in the highest level vs. the one of the true estimate (original problem, lowest level)

	Prob. mass not covered	Prob. mass outside
Intel	y 0.10%	, 10.18%
W-10000	2.53%	24.05%
Stanford	0.01%	7.88%
Sphere	2.75%	10.21%

low risk of becoming overly confident

one does not ignore too much information

Consistency



- Red: overly confident (~0.1% prob. mass)
- Blue: under confident (~10% prob. mass)

Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton
- The H matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- One of the state-of-the-art solutions for computing maps
- Hierarchical pose-graph for computing approximate solutions online

Literature

Least Squares SLAM

 Grisetti, Kümmerle, Stachniss, Burgard: "A Tutorial on Graph-based SLAM", 2010

Hierarchical Approach

- Grisetti, Kümmerle, Stachniss, Frese, and Hertzberg: "Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping"
- Code: http://openslam.org/hog-man.html