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Robot Mapping  

Least Squares SLAM 
Revisited &  
Hierarchical Approach to 
Least Squares SLAM 

Cyrill Stachniss 

2 
Robot pose Constraint  

Graph-Based SLAM 

!  Constraints connect the poses of the 
robot while it is moving 

!  Constraints are inherently uncertain 
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Graph-Based SLAM 

!  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

!  Use a graph to represent the problem 
!  Every node in the graph corresponds 

to a pose of the robot during mapping 
!  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

!  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
constraints  
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The Graph 

!  It consists of n nodes   
!  Each     is a 2D or 3D transformation 

(the pose of the robot at time ti) 
!  A constraint/edge exists between the 

nodes     and     if… 
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Create an Edge If… (1) 

!  …the robot moves from     to 
!  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

!  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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Create an Edge If… (2) 

!  …the robot observes the same part of 
the environment from     and from 

!  Construct a virtual measurement 
about the position of     seen from  
 

Edge represents the position of     seen 
from     based on the observation  
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Transformations 

!  Transformations can be expressed 
using homogenous coordinates 

!  Odometry-Based edge 
 

!  Observation-Based edge 

How node i sees node j 
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Pose Graph 

!  Goal: 

nodes 
according to 

the graph  

error 

observation  
of      from 

edge 
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The Error Function 
!  Error function for a single constraint  

!  Error takes a value of zero if 

xj referenced w.r.t. xi measurement 
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Gauss-Newton: The Overall 
Error Minimization Procedure  
!  Define the error function 
!  Linearize the error function  
!  Compute its derivative  
!  Set the derivative to zero 
!  Solve the linear system 
!  Iterate this procedure until 

convergence 
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Linearizing the Error Function 

!  We can approximate the error 
functions around an initial guess    
via Taylor expansion 

with 
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Jacobians and Sparsity 

!  Error           depends only on the two 
parameter blocks     and 

 
 
!  The Jacobian will be zero everywhere 

except in the columns of     and  

 

15 

Consequences of the Sparsity 

!  We need to compute the coefficient 
vector    and matrix    : 

 
!  The sparse structure of      will result 

in a sparse structure of   
!  This structure reflects the adjacency 

matrix of the graph 
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Illustration of the Structure 

Non-zero only at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

Non-zero only at xi and xj 

... and at 
the blocks 

ij,ji 

Non-zero on the main  
diagonal at xi and xj 
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Illustration of the Structure 

+ + … + 

+ + … + 
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The Linear System 

!  Vector of the states increments: 

!  Coefficient vector: 

!  System matrix: 
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Building the Linear System 

For each constraint: 
!  Compute error 
!  Compute the blocks of the Jacobian: 

 
!  Update the coefficient vector: 
 
!  Update the system matrix: 
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Algorithm 
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Example on the Blackboard 
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Trivial 1D Example 

!  Two nodes and one observation 

BUT                    ??? 
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What Went Wrong? 

!  The constraint specifies a relative 
constraint between both nodes 

!  Any poses for the nodes would be fine  
as long a their relative coordinates fit 

!  One node needs to be “fixed” 

constraint 
that sets  
dx1=0 
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Role of the Prior 

!  We saw that the matrix     has not full 
rank (after adding the constraints) 

!  The global frame had not been fixed  
!  Fixing the global reference frame is 

strongly related to the prior 
!  A Gaussian estimate about      results 

in an additional constraint 
!  E.g., first pose in the origin:  
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Real World Examples 
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Fixing a Subset of Variables 
!  Assume that the value of certain variables 

during the optimization is known a priori 
!  We may want to optimize all others and 

keep these fixed 
!  How? 
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Fixing a Subset of Variables 
!  Assume that the value of certain variables 

during the optimization is known a priori 
!  We may want to optimize all others and 

keep these fixed 
!  How? 
!  If a variable is not optimized, it should 

“disappears” from the linear system 

30 

Fixing a Subset of Variables 
!  Assume that the value of certain variables 

during the optimization is known a priori 
!  We may want to optimize all others and 

keep these fixed 
!  How? 
!  If a variable is not optimized, it should 

“disappears” from the linear system 
!  Construct the full system 
!  Suppress the rows and the columns 

corresponding to the variables to fix 
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Why Can We Simply Suppress 
the Rows and Columns of the 
Corresponding Variables? 

Courtesy: R. Eustice 32 

Uncertainty 

!      is the information matrix  
(given the linearization point) 

!  Inverting     results in a (dense) 
covariance matrix 

!  The diagonal blocks of the covariance 
matrix represent the (absolute) 
uncertainties of the corresponding 
variables 
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Relative Uncertainty 

To determine the relative uncertainty 
between two nodes     and    : 
!  Construct the matrix  
!  Suppress the rows and the columns of   

    (=“fixes” this variable) 
!  Compute the block j,j of the inverse 
!  This block will contain the covariance 

matrix of     w.r.t.    , which has been 
fixed 
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Example 

robot 
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Does all that run online? 
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Does all that run online? 

… it depends on the size of the graph… 
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bottom layer 
(input data) 

first layer second layer top layer 

“There is no need to optimize the whole  
graph when a new observation is obtained” 

Hierarchical Pose-Graph 
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Motivation 

!  Front-end seeks for loop-closures 
!  Requires to compare observations to 

all previously obtained ones 
!  In practice, limit search to areas in 

which the robot is likely to be 
!  This requires to know in  

which parts of the graph  
to search for data  
associations 
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Hierarchical Approach 
!  Insight: to find loop closures, one does 

not need the perfect global map 
!  Idea: correct only the core structure of 

the scene, not the overall graph 
!  The hierarchical pose-graph is a sparse 

approximation of the original problem 
!  It exploits the facts that in SLAM 

! Robot moved through the scene and it 
not “teleported” to locations 

! Sensors have a limited range 
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Key Idea of the Hierarchy  
!  Input is the dense 

graph 
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Key Idea of the Hierarchy  
!  Input is the dense 

graph 
!  Group the nodes of  

the graph based on 
their local 
connectivity 
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Key Idea of the Hierarchy  
!  Input is the dense 

graph 
!  Group the nodes of 

the graph based on 
their local connectivity 

!  For each group,  
select one node as a 
“representative” 
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Key Idea of the Hierarchy  
!  The representatives  

are the nodes in a 
new sparsified graph  
(upper level) 
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Key Idea of the Hierarchy  
!  The representatives  

are the nodes in a 
new sparsified graph  
(upper level) 

!  Edges of the sparse 
graph are determined 
by the connectivity of 
the groups of nodes 

!  The parameters of the 
sparse edges are 
estimated via local 
optimization 
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Key Idea of the Hierarchy  
!  The representatives 

are the nodes in a 
new sparsified graph  
(upper level) 

!  Edges of the sparse 
graph are determined 
by the connectivity of 
the groups of nodes 

!  The parameters of the 
sparse edges are 
estimated via local 
optimization 

Process is  
repeated 
recursively 
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Key Idea of the Hierarchy  
!  Only the upper level 

of the hierarchy is 
optimized completely 
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Key Idea of the Hierarchy  
!  Only the upper level 

of the hierarchy is 
optimized completely 

!  The changes are 
propagated to the 
bottom levels only 
close to the current 
robot position 

!  Only this part of the 
graph is relevant for 
finding constraints 

Robot position 
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Construction of the Hierarchy 
!  When and how to generate a new group? 

!  A (simple) distance-based decision 
!  The first node of a new group is the representative 

!  When to propagate information downwards? 
!  Only when there are inconsistencies 

!  How to construct an edge in the sparsified 
graph? 
!  Next slides 

!  How to propagate information downwards? 
!  Next slides 
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Determining Edge Parameters 
!  Given two connected 

groups 
!  How to compute a 

virtual observation  
and the information 
matrix     for the new 
edge? 
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Determining Edge Parameters 
!  Optimize the two sub-

groups jointly but 
independently from the 
rest 
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Determining Edge Parameters 
!  Optimize the two sub-

groups jointly but 
independently from the 
rest 

!  The observation is the 
relative transformation 
between the two 
representatives 
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Determining Edge Parameters 
!  Optimize the two sub-

groups jointly but 
independently from the 
rest 

!  The observation is the 
relative transformation 
between the two 
representatives 

!  The information matrix 
is computed from the 
diagonal block of the 
matrix H  

Inverse of the [b,b] 
block of H-1 
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Propagating Information 
Downwards 
!  All representatives are 

nodes from the lower 
(bottom) level 

same node 
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Propagating Information 
Downwards 
!  All representatives are 

nodes from the lower 
(bottom) level 

!  Information is  
propagated downwards  
by transforming the  
group at the lower level 
using a rigid body 
transformation 
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Propagating Information 
Downwards 
!  All representatives are 

nodes from the lower 
(bottom) level 

!  Information is  
propagated downwards  
by transforming the  
group at the lower level 
using a rigid body 
transformation  

!  Only if the lower level 
becomes inconsistent, 
optimize at the lower level 
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For the Best Possible Map… 
!  Run the optimization on the lowest level  

(at the end) 
!  For offline processing with all constraints, 

the hierarchy helps convergence faster in 
case of large errors 

!  In this case, one pass up the tree (to 
construct the edges) followed by one pass 
down the tree is sufficient 
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Stanford Garage  

 
 

!  Parking garage at Stanford University 
!  Nested loops, trajectory of ~7,000m 
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Stanford Garage Result 

!  Parking garage at Stanford University 
!  Nested loops, trajectory of ~7,000m 
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Stanford Garage Video  
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Intel Research Lab Video 
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Consistency 
!  How well does the top level in the hierarchy 

represent the original input? 
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Consistency 
!  How well does the top level in the hierarchy 

represent the original input? 
!  Probability mass of the marginal distribution in 

the highest level vs. the one of the true estimate 
(original problem, lowest level) 

low risk of becoming 
overly confident 

one does not ignore 
too much information 
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Consistency 

!  Red: overly confident (~0.1% prob. mass) 
!  Blue: under confident (~10% prob. mass) 

~0.1% 

~10% 

3σ ellipses 
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Conclusions 

!  The back-end part of the SLAM 
problem can be effectively solved  
with Gauss-Newton  

!  The     matrix is typically sparse 
!  This sparsity allows for efficiently 

solving the linear system 
!  One of the state-of-the-art solutions  

for computing maps  
!  Hierarchical pose-graph for computing 

approximate solutions online  
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