
1

Robot Mapping

Least Squares SLAM
Revisited &
Hierarchical Approach to
Least Squares SLAM

Cyrill Stachniss

2
Robot pose Constraint

Graph-Based SLAM

!  Constraints connect the poses of the
robot while it is moving

!  Constraints are inherently uncertain

3

Graph-Based SLAM

!  Observing previously seen areas
generates constraints between non-
successive poses

Robot pose Constraint
4

Idea of Graph-Based SLAM

!  Use a graph to represent the problem
!  Every node in the graph corresponds

to a pose of the robot during mapping
!  Every edge between two nodes

corresponds to a spatial constraint
between them

!  Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints

5

The Graph

!  It consists of n nodes
!  Each is a 2D or 3D transformation

(the pose of the robot at time ti)
!  A constraint/edge exists between the

nodes and if…

6

Create an Edge If… (1)

!  …the robot moves from to
!  Edge corresponds to odometry

The edge represents the
odometry measurement

7

Create an Edge If… (2)

!  …the robot observes the same part of
the environment from and from

xi

Measurement from

xj

Measurement from
8

Create an Edge If… (2)

!  …the robot observes the same part of
the environment from and from

!  Construct a virtual measurement
about the position of seen from

Edge represents the position of seen
from based on the observation

9

Transformations

!  Transformations can be expressed
using homogenous coordinates

!  Odometry-Based edge

!  Observation-Based edge

How node i sees node j

10

Pose Graph

!  Goal:

nodes
according to

the graph

error

observation
of from

edge

11

The Error Function
!  Error function for a single constraint

!  Error takes a value of zero if

xj referenced w.r.t. xi measurement

12

Gauss-Newton: The Overall
Error Minimization Procedure
!  Define the error function
!  Linearize the error function
!  Compute its derivative
!  Set the derivative to zero
!  Solve the linear system
!  Iterate this procedure until

convergence

13

Linearizing the Error Function

!  We can approximate the error
functions around an initial guess
via Taylor expansion

with

14

Jacobians and Sparsity

!  Error depends only on the two
parameter blocks and

!  The Jacobian will be zero everywhere

except in the columns of and

15

Consequences of the Sparsity

!  We need to compute the coefficient
vector and matrix :

!  The sparse structure of will result

in a sparse structure of
!  This structure reflects the adjacency

matrix of the graph
16

Illustration of the Structure

Non-zero only at xi and xj

17

Illustration of the Structure

Non-zero only at xi and xj

Non-zero on the main
diagonal at xi and xj

18

Illustration of the Structure

Non-zero only at xi and xj

... and at
the blocks

ij,ji

Non-zero on the main
diagonal at xi and xj

19

Illustration of the Structure

+ + … +

+ + … +

20

The Linear System

!  Vector of the states increments:

!  Coefficient vector:

!  System matrix:

21

Building the Linear System

For each constraint:
!  Compute error
!  Compute the blocks of the Jacobian:

!  Update the coefficient vector:

!  Update the system matrix:

22

Algorithm

23

Example on the Blackboard

24

Trivial 1D Example

!  Two nodes and one observation

BUT ???

25

What Went Wrong?

!  The constraint specifies a relative
constraint between both nodes

!  Any poses for the nodes would be fine
as long a their relative coordinates fit

!  One node needs to be “fixed”

constraint
that sets
dx1=0

26

Role of the Prior

!  We saw that the matrix has not full
rank (after adding the constraints)

!  The global frame had not been fixed
!  Fixing the global reference frame is

strongly related to the prior
!  A Gaussian estimate about results

in an additional constraint
!  E.g., first pose in the origin:

27

Real World Examples

28

Fixing a Subset of Variables
!  Assume that the value of certain variables

during the optimization is known a priori
!  We may want to optimize all others and

keep these fixed
!  How?

29

Fixing a Subset of Variables
!  Assume that the value of certain variables

during the optimization is known a priori
!  We may want to optimize all others and

keep these fixed
!  How?
!  If a variable is not optimized, it should

“disappears” from the linear system

30

Fixing a Subset of Variables
!  Assume that the value of certain variables

during the optimization is known a priori
!  We may want to optimize all others and

keep these fixed
!  How?
!  If a variable is not optimized, it should

“disappears” from the linear system
!  Construct the full system
!  Suppress the rows and the columns

corresponding to the variables to fix

31

Why Can We Simply Suppress
the Rows and Columns of the
Corresponding Variables?

Courtesy: R. Eustice 32

Uncertainty

!  is the information matrix
(given the linearization point)

!  Inverting results in a (dense)
covariance matrix

!  The diagonal blocks of the covariance
matrix represent the (absolute)
uncertainties of the corresponding
variables

33

Relative Uncertainty

To determine the relative uncertainty
between two nodes and :
!  Construct the matrix
!  Suppress the rows and the columns of

 (=“fixes” this variable)
!  Compute the block j,j of the inverse
!  This block will contain the covariance

matrix of w.r.t. , which has been
fixed

34

Example

robot

35

Does all that run online?

36

Does all that run online?

… it depends on the size of the graph…

37

bottom layer
(input data)

first layer second layer top layer

“There is no need to optimize the whole
graph when a new observation is obtained”

Hierarchical Pose-Graph

38

Motivation

!  Front-end seeks for loop-closures
!  Requires to compare observations to

all previously obtained ones
!  In practice, limit search to areas in

which the robot is likely to be
!  This requires to know in

which parts of the graph
to search for data
associations

39

Hierarchical Approach
!  Insight: to find loop closures, one does

not need the perfect global map
!  Idea: correct only the core structure of

the scene, not the overall graph
!  The hierarchical pose-graph is a sparse

approximation of the original problem
!  It exploits the facts that in SLAM

! Robot moved through the scene and it
not “teleported” to locations

! Sensors have a limited range

40

Key Idea of the Hierarchy
!  Input is the dense

graph

41

Key Idea of the Hierarchy
!  Input is the dense

graph
!  Group the nodes of

the graph based on
their local
connectivity

42

Key Idea of the Hierarchy
!  Input is the dense

graph
!  Group the nodes of

the graph based on
their local connectivity

!  For each group,
select one node as a
“representative”

43

Key Idea of the Hierarchy
!  The representatives

are the nodes in a
new sparsified graph
(upper level)

44

Key Idea of the Hierarchy
!  The representatives

are the nodes in a
new sparsified graph
(upper level)

!  Edges of the sparse
graph are determined
by the connectivity of
the groups of nodes

!  The parameters of the
sparse edges are
estimated via local
optimization

45

Key Idea of the Hierarchy
!  The representatives

are the nodes in a
new sparsified graph
(upper level)

!  Edges of the sparse
graph are determined
by the connectivity of
the groups of nodes

!  The parameters of the
sparse edges are
estimated via local
optimization

Process is
repeated
recursively

46

Key Idea of the Hierarchy
!  Only the upper level

of the hierarchy is
optimized completely

47

Key Idea of the Hierarchy
!  Only the upper level

of the hierarchy is
optimized completely

!  The changes are
propagated to the
bottom levels only
close to the current
robot position

!  Only this part of the
graph is relevant for
finding constraints

Robot position

48

Construction of the Hierarchy
!  When and how to generate a new group?

!  A (simple) distance-based decision
!  The first node of a new group is the representative

!  When to propagate information downwards?
!  Only when there are inconsistencies

!  How to construct an edge in the sparsified
graph?
!  Next slides

!  How to propagate information downwards?
!  Next slides

49

Determining Edge Parameters
!  Given two connected

groups
!  How to compute a

virtual observation
and the information
matrix for the new
edge?

50

Determining Edge Parameters
!  Optimize the two sub-

groups jointly but
independently from the
rest

51

Determining Edge Parameters
!  Optimize the two sub-

groups jointly but
independently from the
rest

!  The observation is the
relative transformation
between the two
representatives

52

Determining Edge Parameters
!  Optimize the two sub-

groups jointly but
independently from the
rest

!  The observation is the
relative transformation
between the two
representatives

!  The information matrix
is computed from the
diagonal block of the
matrix H

Inverse of the [b,b]
block of H-1

53

Propagating Information
Downwards
!  All representatives are

nodes from the lower
(bottom) level

same node

54

Propagating Information
Downwards
!  All representatives are

nodes from the lower
(bottom) level

!  Information is
propagated downwards
by transforming the
group at the lower level
using a rigid body
transformation

55

Propagating Information
Downwards
!  All representatives are

nodes from the lower
(bottom) level

!  Information is
propagated downwards
by transforming the
group at the lower level
using a rigid body
transformation

!  Only if the lower level
becomes inconsistent,
optimize at the lower level

56

For the Best Possible Map…
!  Run the optimization on the lowest level

(at the end)
!  For offline processing with all constraints,

the hierarchy helps convergence faster in
case of large errors

!  In this case, one pass up the tree (to
construct the edges) followed by one pass
down the tree is sufficient

57

Stanford Garage

!  Parking garage at Stanford University
!  Nested loops, trajectory of ~7,000m

58

Stanford Garage Result

!  Parking garage at Stanford University
!  Nested loops, trajectory of ~7,000m

59

Stanford Garage Video

60

Intel Research Lab Video

61

Consistency
!  How well does the top level in the hierarchy

represent the original input?

62

Consistency
!  How well does the top level in the hierarchy

represent the original input?
!  Probability mass of the marginal distribution in

the highest level vs. the one of the true estimate
(original problem, lowest level)

low risk of becoming
overly confident

one does not ignore
too much information

63

Consistency

!  Red: overly confident (~0.1% prob. mass)
!  Blue: under confident (~10% prob. mass)

~0.1%

~10%

3σ ellipses

64

Conclusions

!  The back-end part of the SLAM
problem can be effectively solved
with Gauss-Newton

!  The matrix is typically sparse
!  This sparsity allows for efficiently

solving the linear system
!  One of the state-of-the-art solutions

for computing maps
!  Hierarchical pose-graph for computing

approximate solutions online

65

Literature

Least Squares SLAM
!  Grisetti, Kümmerle, Stachniss,

Burgard: “A Tutorial on Graph-based
SLAM”, 2010

Hierarchical Approach
!  Grisetti, Kümmerle, Stachniss, Frese,

and Hertzberg: “Hierarchical
Optimization on Manifolds for Online
2D and 3D Mapping”

!  Code: http://openslam.org/hog-man.html

