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Least Squares Approach
to SLAM
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Three Main SLAM Paradigms

Kalman Particle | Graph-
filter filter based
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least squares
approach to SLAM

Least Squares in General

= Approach for computing a solution for
an overdetermined system

= “"More equations than unknowns”

= Minimizes the sum of the squared
errors in the equations

= Standard approach to a large set of
problems

Today: Application to SLAM

Graph-Based SLAM

= Constraints connect the poses of the
robot while it is moving

= Constraints are inherently uncertain
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Graph-Based SLAM

= Observing previously seen areas
generates constraints between non-
successive poses
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Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds
to a pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph
and find a node configuration that
minimize the error introduced by the
constraints

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds
to a robot position
and a laser
measurement

= An edge between
two nodes
represents a spatial
constraint between
the nodes

KUKA Halle 22, courtesy of P. Pfaff
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Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

Graph-Based SLAM in a Nutshell

= Once we have the
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the most likely map
by correcting the
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... like this ]
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Graph-Based SLAM in a Nutshell

= Once we have the
graph, we determine
the most likely map
by correcting the
nodes

... like this

= Then, we can render a
map based on the
known poses

ey

RN

11

The Overall SLAM System

= Interplay of front-end and back-end

= Map helps to determine constraints by
reducing the search space

= Topic today: optimization

node positions
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Graph Graph

1;%. C:_nstr;u;ti;n m— ‘ Ogtin:zzti;)n
ont-En ack-En

(Fr ) (nodes & edges) (¢ )

Itoday 12




The Graph

= It consists of n nodes x = x1:,

= Fach x; is a 2D or 3D transformation
(the pose of the robot at time ;)

= A constraint/edge exists between the
nodes x; andx; if...
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Create an Edge If... (1)

= ...the robot moves from x; to x;4 1
= Edge corresponds to odometry

o—@®
Xq \ Xi+1

The edge represents the
odometry measurement
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

Xj

Measurement from x; Measurement from x;
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Create an Edge If... (2)

= ...the robot observes the same part of
the environment from x; and from x;

= Construct a virtual measurement
about the position of x; seen from x;

o

X5 Yﬂ

Edge represents the position of x;seen
from x; based on the observation
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Transformations

= Transformations can be expressed
using homogenous coordinates

= Odometry-Based edge
(X; ' Xit1)

= Observation-Based edge
(X; 1X;)
How node i sees node j
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Homogenous Coordinates

= H.C. are a system of coordinates used
in projective geometry

= Projective geometry is an alternative
algebraic representation of geometric
objects and transformations

= Formulas involving H.C. are often
simpler than in the Cartesian world

= A single matrix can represent affine
transformations and projective

transformations
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Homogenous Coordinates

= H.C. are a system of coordinates used
in projective geometry

= Projective geometry is an alternative
algebraic representation of geometric
objects and transformations

= Formulas involving H.C. are often
simpler than in the Cartesian world

= A single matrix can represent
affine transformations and
projective transformations
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Homogenous Coordinates

= N-dim space expressed in N+1 dim
= 4 dim. for modeling the 3D space

= To HC: (z,y, Z)T — (z,v, 2, l)T

" Backwards: (z.y.zw)" - (2,57

= Vector in HC: v = (z,y, 2z, w)T
= Translation: (
T =

OO+ O

= Rotation:
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The Edge Information Matrices

= Observations are affected by noise

= Information matrix §2;; for each edge
to encode its uncertainty

= The “bigger” Q;;, the more the edge
“matters” in the optimization

Questions
= What do the information matrices look like
in case of scan-matching vs. odometry?

= What should these matrices look like when

moving in a long, featureless corridor?
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Pose Graph

observation

<Zij7 Qlj> — edge
of X;fromX;

e;; (x4, x;)
Xj error
nodes
according to
the graph
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Pose Graph

observation

<Zij7 Q”> D— edge
of X;fromx;

e;;(x;,%;)
Xj error
nodes
according to
the graph

. * __ ; TO. .o .
= Goal: x _arg)EngeZ-jQwe”
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization
x* = arg}zninZeg;(xi,xj)ﬂijeij(xi,xj)
ij
— ; T
= arg)r;mn%ek (x) Qe (x)
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

ES

x* = argmin)_ eZ(x)lek(X)
X
k

Question:
= What is the state vector?
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Least Squares SLAM

= This error function looks suitable for
least squares error minimization

x* = argminZe%(x)lek(x)
X k

Question:

= What is the state vector?

One block for each
Xn'j/ node of the graph

= Specify the error function!
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The Error Function

= Error function for a single constraint
eij(xi,x;) = t2v(Z; (X 1X,))

| measurement| | x; referenced w.rt. x; |

= Error as a function of the whole state vector
e (%) = t2v(Z; (X 1X;))

= Error takes a value of zero if
Zi; = (X7 X))
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Gauss-Newton: The Overall
Error Minimization Procedure

= Define the error function

= Linearize the error function
= Compute its derivative

= Set the derivative to zero

= Solve the linear system

= [terate this procedure until
convergence
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Linearizing the Error Function

= We can approximate the error
functions around an initial guess X
via Taylor expansion

eij(x + AX) >~ eij(x) + JijAX

with Jij _ 3eg(X)
X
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

=) No, only on x; and Xx;
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?

=) No, only on x; and Xx;
= [s there any consequence on the
structure of the Jacobian?
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Derivative of the Error Function

= Does one error term e;;(x) depend on
all state variables?
m) No, only on x; and x;

= Is there any consequence on the
structure of the Jacobian?

m Yes, it will be non-zero only in the
rows corresponding to x; and x;
Geyy(x) (0200 2oyl )
9% 0%; X
Jij = (0"'Aij"'Bij"'0)
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Jacobians and Sparsity

= Errore;j(x) depends only on the two
parameter blocks x; and x;

e;j(x) = e;;(x4,%;)

= The Jacobian will be zero everywhere
except in the columns of x; and x;

Jij =
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Consequences of the Sparsity

= We need to compute the coefficient
vector b and matrix H:

bt = bl = >eidy
1 %]
H = Y H; = > J,;Q;
1 1
= The sparse structure of J;; will result

in a sparse structure of H

= This structure reflects the adjacency
matrix of the graph
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Illustration of the Structure
bij = JLQ e

—> Non-zero only at x; and x;

~
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Illustration of the Structure
[ |

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and x;
Hj; = 359335 '

—>
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Illustration of the Structure

—> Non-zero only at x; and x;

Non-zero on the main

diagonal at x; and x;
Hj; = 3559335 '

... and at
the blocks

i

—>
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Illustration of the Structure
b =73 by

ij
|+I++| |

v
.+ . +-“+ . .
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Consequences of the Sparsity
= An edge contributes to the linear
system via b;; and H;
= The coefficient vector is:
— e%ﬂij ( O"‘Aij"'Bij"‘C))
— (0...ezl;gijAl.j...eTQ.-B ..... 0)

= It is non-zero only at the indices
corresponding to x; and x;

40




Consequences of the Sparsity

= The coefficient matrix of an edge is:

Hj; = 115

T T

T T

= Non-zero only in the blocks relating i,]j
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Sparsity Summary

= An edge ij contributes only to the
= it and the jt block of b;;
= to the blocks ii, jj, ij and ji of Hij
= Resulting system is sparse
= System can be computed by summing
up the contribution of each edge
= Efficient solvers can be used
» Sparse Cholesky decomposition
= Conjugate gradients

* ... many others -

The Linear System

= Vector of the states increments:

AxT = <Ax{ Axg AXZ)
= Coefficient vector:
T _ LT w1 A
b" = (b BY - B])
= System matrix:
7l {12 ... fgin
21 {22 ... [{2n
H = H: H H:

43

Building the Linear System

For each constraint:
= Compute error e;; = t2v(Z;;' (X; X))
= Compute the blocks of the Jacobian:
oe(x;,x;) oe(x;,x;)
L - — Bijj=—7F—"
8Xz‘ 8Xj
= Update the coefficient vector:
= Update the system matrix:

A
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Algorithm
1: optimize(x):
2: while (lconverged)
3: (H, b) = buildLinearSystem(x) Example on the Blackboard
4: Ax = solveSparse(HAx = —b)
: X =X+ Ax
6: end
7 return x
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Trivial 1D Example What Went Wrong?
= Two nodes and one observation = The constraint specifies a relative
x = (z122)7 = (00) constraint between both nodes
z10 = 1 = Any poses for the nodes would be fine
Q = 2 as long a their relative coordinates fit
e;p = =zi2—(22—21)=1-(0-0)=1 = One node needs to be “fixed”
Jio = (1 -1)
T _ T _ . constraint
bio = ex12J12 = (; 2; H — < 22 _22 ) < (1) 8 ) that sets
Hip, = J1,QJ50= P B dx,=0
Ax = —H71b _ T
* 12712 BUTdet(H) = 02?2, Ax = (01) 3




Role of the Prior

= We saw that the matrix H has not full
rank (after adding the constraints)

= The global frame had not been fixed

= Fixing the global reference frame is
strongly related to the prior p(xg)

= A Gaussian estimate about xg results
in an additional constraint

= E.g., first pose in the origin:
e(xg) = t2v(Xp)
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Real World Examples

50

Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?
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Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
“disappears” from the linear system
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Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
“disappears” from the linear system

= Construct the full system

= Suppress the rows and the columns
corresponding to the variables to fix
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Why Can We Simply Suppress
the Rows and Columns of the
Corresponding Variables?

ple) = (3] [352 50 ) = (s ] [R50 8 )

Zga Zpp Aga App
‘ MARGINALIZATION CONDITIONING
p(a) = [ p(e, B)dB p(e | B) = p(a, B)/p(B)
(‘O\V, /‘L — /‘er /’l’/ — ﬁl'u N \‘—:(»j\‘—“?i<5 o L‘l’ }\‘
FORM| . _ . SV_s  _ s _si—lg
“ ~C —‘ ~ac 1okl Rl o1e"
—1

INFO.| M =To — AapAggmnp ' =1y — AopB
FORM A =Aga — Ao gA ‘ AN = Aqa

Courtesy: R. Eustice 54

Uncertainty

= H represents the information matrix
given the linearization point

= Inverting H gives the (dense)
covariance matrix

= The diagonal blocks of the covariance
matrix represent the (absolute)
uncertainties of the corresponding
variables
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Relative Uncertainty

To determine the relative uncertainty
between x; and x;:

= Construct the full matrix H

= Suppress the rows and the columns of
X; (= do not optimize/fix this variable)

= Compute the block j,j of the inverse

= This block will contain the covariance
matrix of x; w.r.t. x;, which has been
fixed

56




robot
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Conclusions

= The back-end part of the SLAM
problem can be effectively solved
with Gauss-Newton

= The H matrix is typically sparse

= This sparsity allows for efficiently
solving the linear system

= One of the state-of-the-art solutions
for computing maps
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