Robot Mapping

Least Squares Approach to SLAM

Cyrill Stachniss

Three Main SLAM Paradigms

Kalman filter

Particle filter

Graphbased

,
least squares approach to SLAM

Least Squares in General

- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Today: Application to SLAM

Graph-Based SLAM

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

- Robot pose
"." Constraint

Graph-Based SLAM

- Observing previously seen areas generates constraints between nonsuccessive poses

Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes
represents a spatial constraint between the nodes

Graph-Based SLAM in a Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes
represents a spatial constraint between the nodes

Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes

Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes
... like this

Graph-Based SLAM in a Nutshell

- Once we have the graph, we determine the most likely map by correcting the nodes
... like this
- Then, we can render a map based on the known poses

The Overall SLAM System

- Interplay of front-end and back-end
- Map helps to determine constraints by reducing the search space
- Topic today: optimization
node positions

The Graph

- It consists of n nodes $\mathrm{x}=\mathrm{x}_{1: n}$
- Each x_{i} is a 2D or 3D transformation (the pose of the robot at time t_{i})
- A constraint/edge exists between the nodes x_{i} and x_{j} if...

Create an Edge If... (1)

- ...the robot moves from x_{i} to x_{i+1}
- Edge corresponds to odometry

The edge represents the odometry measurement

Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_{i} and from x_{j}

Measurement from \mathbf{x}_{i}

Measurement from \mathbf{x}_{j}

Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_{i} and from x_{j}
- Construct a virtual measurement about the position of x_{j} seen from x_{i}

Edge represents the position of \mathbf{x}_{j} seen from x_{i} based on the observation

Transformations

- Transformations can be expressed using homogenous coordinates
- Odometry-Based edge

$$
\left(\mathbf{X}_{i}^{-1} \mathbf{X}_{i+1}\right)
$$

- Observation-Based edge

$$
\left(\mathbf{X}_{i}^{-1} \mathbf{X}_{j}\right)
$$

How node i sees node j

Homogenous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Formulas involving H.C. are often simpler than in the Cartesian world
- A single matrix can represent affine transformations and projective transformations

Homogenous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Formulas involving H.C. are often simpler than in the Cartesian world
- A single matrix can represent affine transformations and projective transformations

Homogenous Coordinates

- N-dim space expressed in N+1 dim
- 4 dim . for modeling the 3D space
- To HC: $(x, y, z)^{T} \rightarrow(x, y, z, 1)^{T}$
- Backwards: $(x, y, z, w)^{T} \rightarrow\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)^{T}$
- Vector in HC: $v=(x, y, z, w)^{T}$
- Translation:
- Rotation:

$$
T=\left(\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
R=\left(\begin{array}{cc}
R^{3 D} & 0 \\
0 & 1
\end{array}\right)
$$

The Edge Information Matrices

- Observations are affected by noise
- Information matrix $\Omega_{i j}$ for each edge to encode its uncertainty
- The "bigger" $\Omega_{i j}$, the more the edge "matters" in the optimization

Questions

- What do the information matrices look like in case of scan-matching vs. odometry?
- What should these matrices look like when moving in a long, featureless corridor?

Pose Graph

Pose Graph

- Goal: $\mathbf{x}^{*}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i j} \mathbf{e}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{e}_{i j}$

Least Squares SLAM

- This error function looks suitable for least squares error minimization

$$
\begin{aligned}
\mathbf{x}^{*} & =\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i j} \mathbf{e}_{i j}^{T}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \boldsymbol{\Omega}_{i j} \mathbf{e}_{i j}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
& =\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \Omega_{k} \mathbf{e}_{k}(\mathbf{x})
\end{aligned}
$$

Least Squares SLAM

- This error function looks suitable for least squares error minimization

$$
\mathrm{x}^{*}=\underset{\mathrm{x}}{\operatorname{argmin}} \sum_{k} \mathrm{e}_{k}^{T}(\mathrm{x}) \Omega_{k} \mathbf{e}_{k}(\mathrm{x})
$$

Question:

- What is the state vector?

Least Squares SLAM

- This error function looks suitable for least squares error minimization

$$
\mathbf{x}^{*}=\underset{\mathbf{x}}{\operatorname{argmin}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \Omega_{k} \mathbf{e}_{k}(\mathbf{x})
$$

Question:

- What is the state vector?

$$
\mathbf{x}^{T}=\left(\begin{array}{llll}
\mathbf{x}_{1}^{T} & \mathbf{x}_{2}^{T} & \cdots & \mathbf{x}_{n}^{T}
\end{array}\right) \quad \begin{aligned}
& \text { One block for each } \\
& \text { node of the graph }
\end{aligned}
$$

- Specify the error function!

The Error Function

- Error function for a single constraint

$$
\begin{aligned}
& \mathrm{e}_{i j}\left(\mathrm{x}_{i}, \mathbf{x}_{j}\right)=\operatorname{t2v}\left(\frac{\mathbf{Z}_{i j}^{-1}}{t} \frac{\left.\left(\mathbf{X}_{i}^{-1} \mathbf{X}_{j}\right)\right)}{1}\right. \\
& \quad \text { measurement } \boldsymbol{x}_{i} \text { referenced w.r.t. } \boldsymbol{x}_{i}
\end{aligned}
$$

- Error as a function of the whole state vector

$$
\mathbf{e}_{i j}(\mathbf{x})=\operatorname{t2v}\left(\mathbf{Z}_{i j}^{-1}\left(\mathbf{X}_{i}^{-1} \mathbf{X}_{j}\right)\right)
$$

- Error takes a value of zero if

$$
\mathbf{Z}_{i j}=\left(\mathbf{X}_{i}^{-1} \mathbf{X}_{j}\right)
$$

Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

- We can approximate the error functions around an initial guess \mathbf{x} via Taylor expansion

$$
\begin{array}{r}
\mathrm{e}_{i j}(\mathrm{x}+\Delta \mathrm{x}) \simeq \mathrm{e}_{i j}(\mathrm{x})+\mathrm{J}_{i j} \Delta \mathrm{x} \\
\text { with } \mathrm{J}_{i j}=\frac{\partial \mathrm{e}_{i j}(\mathrm{x})}{\partial \mathrm{x}}
\end{array}
$$

Derivative of the Error Function

- Does one error term $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables?

Derivative of the Error Function

- Does one error term $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables?
\Rightarrow No, only on x_{i} and x_{j}

Derivative of the Error Function

- Does one error term $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables?
\Rightarrow No, only on x_{i} and x_{j}
- Is there any consequence on the structure of the Jacobian?

Derivative of the Error Function

- Does one error term $\mathrm{e}_{i j}(\mathrm{x})$ depend on all state variables?
\Rightarrow No, only on x_{i} and x_{j}
- Is there any consequence on the structure of the Jacobian?
\Rightarrow Yes, it will be non-zero only in the rows corresponding to x_{i} and x_{j}

$$
\begin{aligned}
\frac{\partial \mathbf{e}_{i j}(\mathbf{x})}{\partial \mathbf{x}} & =\left(0 \cdots \frac{\partial \mathbf{e}_{i j}\left(\mathbf{x}_{i}\right)}{\partial \mathbf{x}_{i}} \cdots \frac{\partial \mathbf{e}_{i j}\left(\mathbf{x}_{j}\right)}{\partial \mathbf{x}_{j}} \cdots \mathbf{0}\right) \\
\mathbf{J}_{i j} & =\left(\mathbf{0} \cdots \mathbf{A}_{i j} \cdots \mathbf{B}_{i j} \cdots \mathbf{0}\right)
\end{aligned}
$$

Jacobians and Sparsity

- Error $\mathrm{e}_{i j}(\mathrm{x})$ depends only on the two parameter blocks x_{i} and x_{j}

$$
\mathbf{e}_{i j}(\mathrm{x})=\mathrm{e}_{i j}\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)
$$

- The Jacobian will be zero everywhere except in the columns of \mathbf{x}_{i} and \mathbf{x}_{j}

Consequences of the Sparsity

- We need to compute the coefficient vector b and matrix H :

$$
\begin{aligned}
& \mathbf{b}^{T}=\sum_{i j} \mathbf{b}_{i j}^{T}=\sum_{i j} \mathbf{e}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{J}_{i j} \\
& \mathbf{H}=\sum_{i j} \mathbf{H}_{i j}=\sum_{i j} \mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{J}_{i j}
\end{aligned}
$$

- The sparse structure of $\mathbf{J}_{i j}$ will result in a sparse structure of \mathbf{H}
- This structure reflects the adjacency matrix of the graph

Illustration of the Structure

$$
\mathbf{b}_{i j}=\mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{e}_{i j}
$$

Illustration of the Structure

$$
\mathbf{b}_{i j}=\mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{e}_{i j}
$$

$$
\mathbf{H}_{i j}=\mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{J}_{i j}
$$

Non-zero only at $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{j}}$

Non-zero on the main diagonal at $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{j}}$

Illustration of the Structure

$$
\mathbf{b}_{i j}=\mathbf{J}_{i j}^{T} \Omega_{i j} \mathbf{e}_{i j}
$$

Non-zero only at $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{j}}$

Non-zero on the main diagonal at $\boldsymbol{x}_{\boldsymbol{i}}$ and $\boldsymbol{x}_{\boldsymbol{j}}$

$$
\mathbf{H}_{i j}=\mathbf{J}_{i j}^{T} \Omega_{i j} \mathbf{J}_{i j}
$$

Illustration of the Structure

$\mathbf{H}=\sum_{i j} \mathbf{H}_{i j}$

Consequences of the Sparsity

- An edge contributes to the linear system via $\mathbf{b}_{i j}$ and $\mathbf{H}_{i j}$
- The coefficient vector is:

$$
\begin{aligned}
\mathbf{b}_{i j}^{T} & =\mathbf{e}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{J}_{i j} \\
& =\mathbf{e}_{i j}^{T} \Omega_{i j}\left(0 \cdots \mathbf{A}_{i j} \cdots \mathbf{B}_{i j} \cdots \mathbf{0}\right) \\
& =\left(0 \cdots \mathbf{e}_{i j}^{T} \Omega_{i j} \mathbf{A}_{i j} \cdots \mathbf{e}_{i j}^{T} \Omega_{i j} \mathbf{B}_{i j} \cdots \mathbf{0}\right)
\end{aligned}
$$

- It is non-zero only at the indices corresponding to x_{i} and x_{j}

Consequences of the Sparsity

- The coefficient matrix of an edge is:

$$
\begin{aligned}
\mathbf{H}_{i j} & =\mathbf{J}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{J}_{i j} \\
& =\left(\begin{array}{c}
\vdots \\
\mathbf{A}_{i j}^{T} \\
\vdots \\
\mathbf{B}_{i j}^{T} \\
\vdots
\end{array}\right) \Omega_{i j}\left(\cdots \mathbf{A}_{i j} \cdots \mathbf{B}_{i j} \cdots\right) \\
& =\left(\begin{array}{c}
\mathbf{A}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{A}_{i j} \\
\mathbf{A}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{B}_{i j} \\
\mathbf{B}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{A}_{i j} \\
\mathbf{B}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{B}_{i j}
\end{array}\right)
\end{aligned}
$$

- Non-zero only in the blocks relating i,j

Sparsity Summary

- An edge ij contributes only to the
- $\mathrm{i}^{\text {th }}$ and the $\mathrm{j}^{\text {th }}$ block of $\mathrm{b}_{i j}$
- to the blocks ii, jj, ij and ji of $\mathbf{H}_{i j}$
- Resulting system is sparse
- System can be computed by summing up the contribution of each edge
- Efficient solvers can be used
- Sparse Cholesky decomposition
- Conjugate gradients
- ... many others

The Linear System

- Vector of the states increments:

$$
\Delta \mathbf{x}^{T}=\left(\begin{array}{llll}
\Delta \mathbf{x}_{1}^{T} & \Delta \mathbf{x}_{2}^{T} & \cdots & \Delta \mathbf{x}_{n}^{T}
\end{array}\right)
$$

- Coefficient vector:

$$
\mathbf{b}^{T}=\left(\begin{array}{llll}
\overline{\mathbf{b}}_{1}^{T} & \overline{\mathbf{b}}_{2}^{T} & \cdots & \overline{\mathbf{b}}_{n}^{T}
\end{array}\right)
$$

- System matrix:

$$
\mathbf{H}=\left(\begin{array}{cccc}
\overline{\mathbf{H}}^{11} & \overline{\mathbf{H}}^{12} & \cdots & \overline{\mathbf{H}}^{1 n} \\
\overline{\mathbf{H}}^{21} & \overline{\mathbf{H}}^{22} & \cdots & \overline{\mathbf{H}}^{2 n} \\
\vdots & \ddots & & \vdots \\
\overline{\mathbf{H}}^{n 1} & \overline{\mathbf{H}}^{n 2} & \cdots & \overline{\mathbf{H}}^{n n}
\end{array}\right)
$$

Building the Linear System

For each constraint:

- Compute error $\mathrm{e}_{i j}=\operatorname{t2v}\left(\mathrm{Z}_{i j}^{-1}\left(\mathrm{X}_{i}^{-1} \mathrm{X}_{j}\right)\right)$
- Compute the blocks of the Jacobian:

$$
\mathbf{A}_{i j}=\frac{\partial \mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{\partial \mathbf{x}_{i}} \quad \mathbf{B}_{i j}=\frac{\partial \mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{\partial \mathbf{x}_{j}}
$$

- Update the coefficient vector:

$$
\overline{\mathrm{b}}_{i}^{T}+=\mathbf{e}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{A}_{i j} \quad \overline{\mathrm{~b}}_{j}^{T}+=\mathbf{e}_{i j}^{T} \Omega_{i j} \mathbf{B}_{i j}
$$

- Update the system matrix:

$$
\begin{aligned}
\overline{\mathbf{H}}^{i i}+=\mathbf{A}_{i j}^{T} \Omega_{i j} \mathbf{A}_{i j} & \overline{\mathbf{H}}^{i j}+\mathbf{A}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{B}_{i j} \\
\overline{\mathbf{H}}^{j i}+=\mathbf{B}_{i j}^{T} \Omega_{i j} \mathbf{A}_{i j} & \overline{\mathbf{H}}^{j j}+=\mathbf{B}_{i j}^{T} \boldsymbol{\Omega}_{i j} \mathbf{B}_{i j}
\end{aligned}
$$

Algorithm

1: optimize(x):
2: while (!converged)
$(\mathbf{H}, \mathbf{b})=$ buildLinearSystem (\mathbf{x})
$\boldsymbol{\Delta} \mathbf{x}=\operatorname{solveSparse}(\mathbf{H} \boldsymbol{\Delta} \mathbf{x}=-\mathbf{b})$
$\mathrm{x}=\mathrm{x}+\Delta \mathrm{x}$
6: end
7: return \mathbf{x}

Example on the Blackboard

Trivial 1D Example

- Two nodes and one observation

$$
\begin{aligned}
\mathbf{x} & =\left(x_{1} x_{2}\right)^{T}=(00) \\
\mathbf{z}_{12} & =1 \\
\Omega & =2 \\
\mathbf{e}_{12} & ==z_{12}-\left(x_{2}-x_{1}\right)=1-(0-0)=1 \\
\mathbf{J}_{12} & =(1-1) \\
\mathbf{b}_{12}^{T} & =\mathbf{e}_{12}^{T} \Omega_{12} \mathbf{J}_{12}=(2-2) \\
\mathbf{H}_{12} & =\mathbf{J}_{12}^{T} \boldsymbol{\Omega} \mathbf{J}_{12}=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
\end{aligned}
$$

$$
\Delta \mathbf{x}=-\mathbf{H}_{12}^{-1} b_{12} \quad \mathbf{B U T} \operatorname{det}(\mathbf{H})=0 \text { ??? }
$$

What Went Wrong?

- The constraint specifies a relative constraint between both nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be "fixed"

$$
\begin{aligned}
\mathbf{H} & =\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \begin{array}{c}
\text { constraint } \\
\text { that sets } \\
\boldsymbol{d} \mathbf{x}_{\mathbf{1}}=\mathbf{0}
\end{array} \\
\boldsymbol{\Delta} \mathbf{x} & =-\mathbf{H}^{-1} b_{12} \\
\boldsymbol{\Delta} \mathbf{x} & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)^{T}
\end{aligned}
$$

Role of the Prior

- We saw that the matrix \mathbf{H} has not full rank (after adding the constraints)
- The global frame had not been fixed
- Fixing the global reference frame is strongly related to the prior $p\left(\mathrm{x}_{0}\right)$
- A Gaussian estimate about x_{0} results in an additional constraint
- E.g., first pose in the origin:

$$
e\left(x_{0}\right)=t 2 v\left(X_{0}\right)
$$

Real World Examples

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Why Can We Simply Suppress the Rows and Columns of the Corresponding Variables?

$p(\boldsymbol{\alpha}, \beta$	$)=\mathcal{N}\left(\left[\begin{array}{l}\mu_{\alpha} \\ \boldsymbol{\mu}_{\beta}\end{array}\right],\left[\begin{array}{lll}\Sigma_{\alpha \alpha} & \Sigma_{\alpha \beta} \\ \Sigma_{\beta \alpha} & \Sigma_{\beta \beta}\end{array}\right.\right.$	$=\mathcal{N}^{-1}\left(\left[\begin{array}{l} \boldsymbol{\eta}_{\alpha} \\ \boldsymbol{\eta}_{\beta} \end{array}\right],\left[\begin{array}{cc} \Lambda_{\alpha \alpha} & \Lambda_{\alpha \beta} \\ \Lambda_{\beta \alpha} & \Lambda_{\beta \beta} \end{array}\right]\right)$ CONDITIONING $p(\boldsymbol{\alpha} \mid \boldsymbol{\beta})=p(\boldsymbol{\alpha}, \boldsymbol{\beta}) / p(\boldsymbol{\beta})$
	MARGINALIZATION $p(\boldsymbol{\alpha})=\int p(\boldsymbol{\alpha}, \boldsymbol{\beta}) d \boldsymbol{\beta}$	
Cov. FORM	$\begin{aligned} & \mu=\mu_{\alpha} \\ & \Sigma=\Sigma_{\alpha \alpha} \end{aligned}$	$\begin{aligned} & \boldsymbol{\mu}^{\prime}=\boldsymbol{\mu}_{\alpha}+\Sigma_{\alpha \beta} \Sigma_{\beta \beta}^{-1}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{\beta}\right) \\ & \Sigma^{\prime}=\Sigma_{\alpha \alpha}-\Sigma_{\alpha \beta} \Sigma_{\beta \beta}^{-1} \Sigma_{\beta \alpha} \end{aligned}$
INFO. FORM	$\begin{aligned} & \eta=\eta_{\alpha}-\Lambda_{\alpha \beta} \Lambda_{\beta \beta}^{-1} \eta_{\beta} \\ & \Lambda=\Lambda_{\alpha \alpha}-\Lambda_{\alpha \beta} \Lambda \end{aligned}$	$\begin{aligned} & \boldsymbol{\eta}^{\prime}=\boldsymbol{\eta}_{\alpha}-\Lambda_{\alpha \beta} \boldsymbol{\beta} \\ & \Lambda^{\prime}=\Lambda_{\alpha \alpha} \end{aligned}$

Uncertainty

- H represents the information matrix given the linearization point
- Inverting H gives the (dense) covariance matrix
- The diagonal blocks of the covariance matrix represent the (absolute) uncertainties of the corresponding variables

Relative Uncertainty

To determine the relative uncertainty between x_{i} and x_{j} :

- Construct the full matrix \mathbf{H}
- Suppress the rows and the columns of x_{i} (= do not optimize/fix this variable)
- Compute the block j, j of the inverse
- This block will contain the covariance matrix of x_{j} w.r.t. x_{i}, which has been fixed

Example

Conclusions

- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton
- The H matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- One of the state-of-the-art solutions for computing maps

Literature

Least Squares SLAM

- Grisetti, Kümmerle, Stachniss, Burgard: "A Tutorial on Graph-based SLAM", 2010

