Robot Mapping

Hierarchical Pose-Graphs for Online Mapping

Graph-Based SLAM (Chap. 15)

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

Graph-Based SLAM (Chap. 15)

- Observing previously seen areas generates constraints between non-successive poses

Graph-Based SLAM (Chap. 15)

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- **Graph-Based SLAM**: Build the graph and find a node configuration that minimize the error introduced by the constraints
Front-End and Back-End

- Front-end extracts constraints from the sensor data (data association!)
- Back-end optimizes the pose-graph to reduce the error introduced by the constraints

Intermediate solutions are needed to make good data associations.

Hierarchical Pose-Graph

```
raw data → graph construction (front-end) → edges → graph optimization (back-end) → node positions
```

“There is no need to optimize the whole graph when a new observation is obtained”

Motivation

- SLAM front-end seeks for loop-closures
- Requires to compare observations to all previously obtained ones
- In practice, limit search to areas in which the robot is likely to be
- This requires to know **in which parts of the graph to search for data associations**

Hierarchical Approach

- **Insight:** to find loop closing points, one does not need the perfect global map
- **Idea:** correct only the core structure of the scene, not the overall graph
- The hierarchical pose-graph is a sparse approximation of the original problem
- It exploits the facts that in SLAM
 - Robot moved through the scene and it not “teleported” to locations
 - Sensors have a limited range
Key Idea of the Hierarchy

- Input is the dense graph

Group the nodes of the graph based on their local connectivity

For each group, select one node as a “representative”

Key Idea of the Hierarchy

- Input is the dense graph
- Group the nodes of the graph based on their local connectivity

The representatives are the nodes in a new sparsified graph (upper level)
The representatives are the nodes in a new sparsified graph (upper level).

Edges of the sparse graph are determined by the connectivity of the groups of nodes.

The parameters of the sparse edges are estimated via local optimization.

Process is repeated recursively.

Only the upper level of the hierarchy is optimized completely.

The changes are propagated to the bottom levels only close to the current robot position.

Only this part of the graph is relevant for finding constraints.
Construction of the Hierarchy

- When and how to generate a new group?
 - A (simple) distance-based decision
 - The first node of a new group is the representative
- When to propagate information downwards?
 - Only when there are inconsistencies
- How to construct an edge in the sparsified graph?
 - Next slides
- How to propagate information downwards?
 - Next slides

Determining Edge Parameters

- Optimize the two sub-groups independently from the rest

Determining Edge Parameters

- Given two connected groups
- How to compute a virtual observation \mathbf{Z} and the information matrix $\mathbf{\Omega}$ for the new edge?

Determining Edge Parameters

- Optimize the two sub-groups independently from the rest
- The observation is the relative transformation between the two representatives
Determining Edge Parameters

- Optimize the two sub-groups independently from the rest
- The observation is the relative transformation between the two representatives
- The information matrix is computed from the diagonal block of the matrix H

$$\Omega_{ab} = (H^{-1}_{[b,b]})^{-1}$$

Propagating Information Downwards

- All representatives are nodes from the lower (bottom) level
- Information is propagated downwards by transforming the group at the lower level using a rigid body transformation

Only if the lower level becomes inconsistent, optimize at the lower level
For the Best Possible Map...

- Run the optimization on the lowest level (at the end)
- For offline processing with all constraints, the hierarchy helps convergence faster in case of large errors
- In this case, one pass up the tree (to construct the edges) followed by one pass down the tree is sufficient

Stanford Garage

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Result

- Parking garage at Stanford University
- Nested loops, trajectory of ~7,000m

Stanford Garage Video
Consistency

- How well does the top level in the hierarchy represent the original input?

- Probability mass of the marginal distribution in the highest level vs. the one of the true estimate (original problem, lowest level)

<table>
<thead>
<tr>
<th></th>
<th>Prob. mass not covered</th>
<th>Prob. mass outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel</td>
<td>0.10%</td>
<td>10.18%</td>
</tr>
<tr>
<td>W-10000</td>
<td>2.53%</td>
<td>24.05%</td>
</tr>
<tr>
<td>Stanford</td>
<td>0.01%</td>
<td>7.88%</td>
</tr>
<tr>
<td>Sphere</td>
<td>2.75%</td>
<td>10.21%</td>
</tr>
</tbody>
</table>

Red: overly confident (~0.1% prob. mass)
Blue: under confident (~10% prob. mass)
Conclusions

- Hierarchical pose-graph to estimate the structure to support efficient data association
- Designed for online mapping (interplay between optimization and data association)
- Higher level represent simplified problem

Literature

Hierarchical Pose-Graph Optimization

- Grisetti, Kümmerle, Stachniss, Frese, and Hertzberg: “Hierarchical Optimization on Manifolds for Online 2D and 3D Mapping”
- Open-source implementation hosted at http://openslam.org/hog-man.html