Robot Mapping

Graph-Based SLAM with Landmarks

Cyrill Stachniss

The Graph

So far:
- Vertices for robot poses \((x, y, \theta)\)
- Edges for virtual observations (transformations) between robot poses

Topic today:
- How to deal with landmarks

Graph-Based SLAM (Chap. 15)

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- **Graph-Based SLAM**: Build the graph and find a node configuration that minimize the error introduced by the constraints

Landmark-Based SLAM
Real Landmark Map Example

Image courtesy: E. Nebot

The Graph with Landmarks

- **Nodes** can represent:
 - Robot poses
 - Landmark locations
- **Edges** can represent:
 - Landmark observations
 - Odometry measurements
- The minimization optimizes the landmark locations and robot poses

2D Landmarks

- Landmark is a \((x, y)\)-point in the world
- Relative observation in \((x, y)\)
Landmarks Observation

- Expected observation (x-y sensor)

\[\hat{z}_{ij}(x_i, x_j) = R_i^T(x_j - t_i) \]

\[\hat{z}_{ij}(x_i, x_j) = R_i^T(x_j - t_i) \]

- Error function

\[e_{ij}(x_i, x_j) = \hat{z}_{ij} - z_{ij} \]

\[e_{ij}(x_i, x_j) = R_i^T(x_j - t_i) - z_{ij} \]

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing towards the landmark

- Observation function

\[\hat{z}_{ij}(x_i, x_j) = \text{atan} \left(\frac{(x_j - t_i)_y}{(x_j - t_i)_x} \right) - \theta_i \]

\[\hat{z}_{ij}(x_i, x_j) = \text{atan} \left(\frac{(x_j - t_i)_y}{(x_j - t_i)_x} \right) - \theta_i \]

- Error function

\[e_{ij}(x_i, x_j) = \text{atan} \left(\frac{(x_j - t_i)_y}{(x_j - t_i)_x} \right) - \theta_i - z_j \]
The Rank of the Matrix H

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are 2x3 matrices
 - H_{ij} cannot have more than rank 2
 \[\text{rank}(A^T A) = \text{rank}(A^T) = \text{rank}(A) \]
- What is the rank of H_{ij} for a bearing-only constraint?
 - The blocks of J_{ij} are 1x3 matrices
 - H_{ij} has rank 1
Where is the Robot?

- Robot observes one landmark \((x, y)\)
- Where can the robot be relative to the landmark?

 ![Diagram showing a robot on a circle around a landmark.]

 The robot can be somewhere on a circle around the landmark.
 It is a 1D solution space (constrained by the distance and the robot's orientation).

Questions

- The rank of \(H\) is **less or equal** to the sum of the ranks of the constraints.
- To determine a **unique solution**, the system must have **full rank**.

Rank

- In landmark-based SLAM, the system can be under-determined.
- The rank of \(H\) is **less or equal** to the sum of the ranks of the constraints.
- To determine a **unique solution**, the system must have **full rank**.

Where is the Robot?

- Robot observes one landmark (bearing-only)
- Where can the robot be relative to the landmark?

 ![Diagram showing a robot in the x-y plane.]

 The robot can be anywhere in the x-y plane.
 It is a 2D solution space (constrained by the robot's orientation).

Questions:

- How many 2D landmark observations are needed to resolve for a robot pose?
- How many bearing-only observations are needed to resolve for a robot pose?
Under-Determined Systems

- No guarantee for a full rank system
 - Landmarks may be observed only once
 - Robot might have no odometry
- We can still deal with these situations by adding a “damping” factor to H
- Instead of solving $H\Delta x = -b$, we solve

$$(H + \lambda I)\Delta x = -b$$

What is the effect of that?

Simplified Levenberg Marquardt

- Damping to regulate the convergence using backup/restore actions

  ```
  x: the initial guess
  while (! converged)
    \lambda = \lambda_{init}
    \langle H, b \rangle = \text{buildLinearSystem}(x);
    E = \text{error}(x)
    x_{old} = x;
    \Delta x = \text{solveSparse}( (H + \lambda I) \Delta x = -b);
    x += \Delta x;
    If (E < \text{error}(x)){
      x = x_{old};
      \lambda *= 2;
    } else { \lambda /= 2; }
  ```

Bundle Adjustment

- 3D reconstruction based on images taken at different viewpoints
- Minimizes the reprojection error
- Often Levenberg Marquardt
- Developed in photogrammetry during the 1950ies
Summary
- Graph-Based SLAM for landmarks
- The rank of \(H \) matters
- Levenberg Marquardt for optimization

Literature

Bundle Adjustment:
- Triggs et al. “Bundle Adjustment — A Modern Synthesis”