Robot Mapping

Graph-Based SLAM with Landmarks

Cyrill Stachniss

Graph-Based SLAM (Chap. 15)

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

The Graph

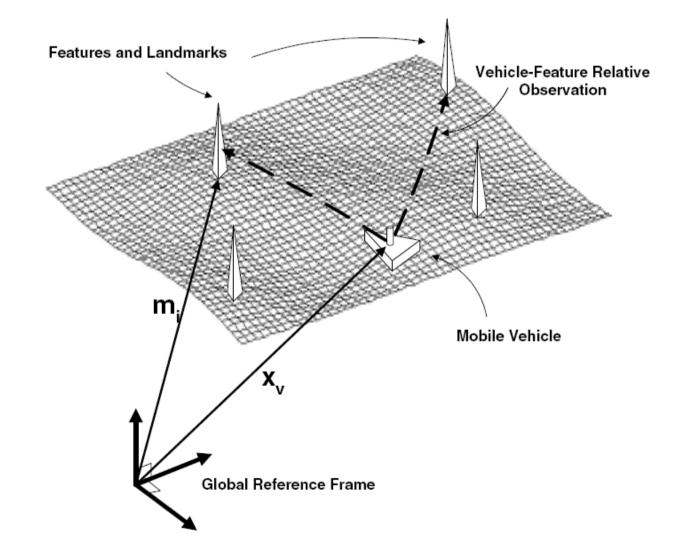
So far:

- Vertices for robot poses (x, y, θ)
- Edges for virtual observations (transformations) between robot poses

Topic today:

How to deal with landmarks

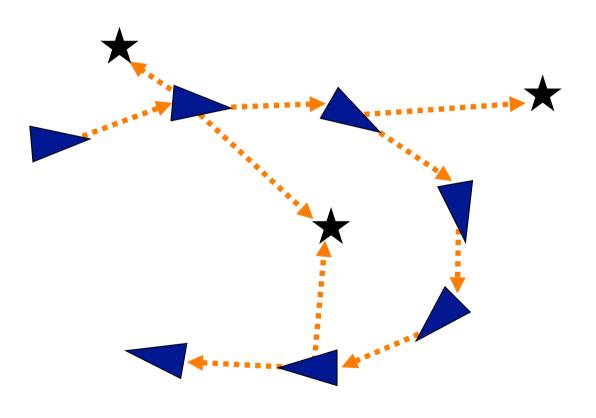
Landmark-Based SLAM

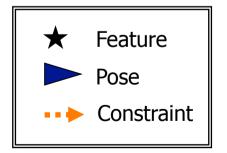


Real Landmark Map Example

Image courtesy: E. Nebot

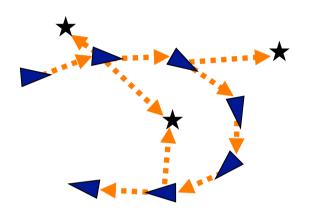
The Graph with Landmarks

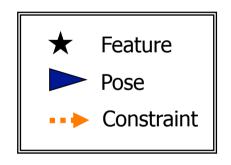




The Graph with Landmarks

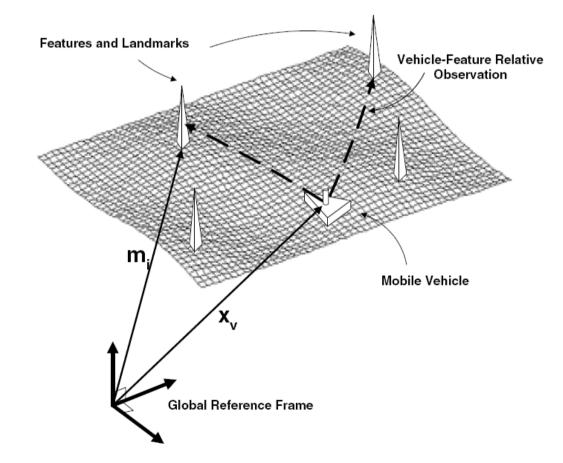
- Nodes can represent:
 - Robot poses
 - Landmark locations
- Edges can represent:
 - Landmark observations
 - Odometry measurements
- The minimization optimizes the landmark locations and robot poses





2D Landmarks

- Landmark is a(x, y)-point in the world
- Relative observation in (x, y)



Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$

 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow robot translation

Landmarks Observation

Expected observation (x-y sensor)

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
robot landmark robot translation

• Error function

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \hat{\mathbf{z}}_{ij} - \mathbf{z}_{ij}$$

 $= \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i) - \mathbf{z}_{ij}$

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing towards the landmark
- Observation function

Bearing Only Observations

Observation function

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan}_{\substack{(\mathbf{x}_j - \mathbf{t}_i).y \\ \uparrow \uparrow}}^{(\mathbf{x}_i, \mathbf{x}_j)} = \operatorname{atan}_{\substack{(\mathbf{x}_j - \mathbf{t}_i).x \\ \uparrow}}^{(\mathbf{x}_j - \mathbf{t}_i).y} - \theta_i$$
robot landmark robot-landmark robot orientation

- Error function

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan} \frac{(\mathbf{x}_j - \mathbf{t}_i).y}{(\mathbf{x}_j - \mathbf{t}_i).x} - \theta_i - \mathbf{z}_j$$

What is the rank of H_{ij} for a 2D landmark-pose constraint?

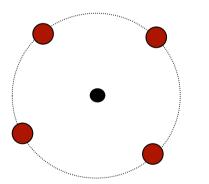
- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2 rank(A^TA) = rank(A^T) = rank(A)

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2 rank(A^TA) = rank(A^T) = rank(A)
- What is the rank of H_{ij} for a bearing-only constraint?

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2 rank(A^TA) = rank(A^T) = rank(A)
- What is the rank of H_{ij} for a bearing-only constraint?
 - The blocks of J_{ij} are a 1x3 matrices
 - \mathbf{H}_{ij} has rank 1

Where is the Robot?

- Robot observes one landmark (x,y)
- Where can the robot be relative to the landmark?



The robot can be somewhere on a circle around the landmark

It is a 1D solution space (constrained by the distance and the robot's orientation)

Where is the Robot?

- Robot observes one landmark (bearing-only)
- Where can the robot be relative to the landmark?

It is a 2D solution space (constrained by the robot's orientation)

Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of H is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Questions

- The rank of H is less or equal to the sum of the ranks of the constraints
- To determine a unique solution, the system must have full rank

Questions:

- How many 2D landmark observations are needed to resolve for a robot pose?
- How many bearing-only observations are needed to resolve for a robot pose?

Under-Determined Systems

- No guarantee for a full rank system
 - Landmarks may be observed only once
 - Robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to H
- Instead of solving $\mathrm{H}\Delta\mathrm{x} = -\mathrm{b}$, we solve

$$(\mathbf{H} + \lambda \mathbf{I}) \Delta \mathbf{x} = -\mathbf{b}$$

What is the effect of that?

$(H + \lambda I) \Delta x = -b$

- Damping factor for H
- $(H + \lambda I)\Delta x = -b$
- The damping factor \u03c8 I makes the system positive definite
- Weighted sum of Gauss Newton and Steepest Descent

Simplified Levenberg Marquardt

 Damping to regulate the convergence using backup/restore actions

```
x: the initial guess
while (! converged)
  \lambda = \lambda_{\text{init}}
   <H,b> = buildLinearSystem(x);
   E = error(\mathbf{x})
   \mathbf{x}_{old} = \mathbf{x};
   \Delta x = solveSparse( (H + \lambda I) \Delta x = -b);
   \mathbf{x} += \Delta \mathbf{x};
   If (E < error(\mathbf{x})) {
      \mathbf{x} = \mathbf{x}_{old};
      \lambda \star = 2;
} else { \lambda /= 2; }
```

Bundle Adjustment

- 3D reconstruction based on images taken at different viewpoints
- Minimizes the reprojection error
- Often Levenberg Marquardt
- Developed in photogrammetry during the 1950ies

Summary

- Graph-Based SLAM for landmarks
- The rank of H matters
- Levenberg Marquardt for optimization

Literature

Bundle Adjustment:

 Triggs et al. "Bundle Adjustment — A Modern Synthesis"