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Robot Mapping  

Max-Mixture and Robust 
Least Squares for SLAM  

Cyrill Stachniss 
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Least Squares in General 

!  Minimizes the sum of the squared 
errors  

!  Strong relation to ML estimation in 
the Gaussian case 

 
Problems:  
!  Sensitive to outliers 
!  Only Gaussians (single modes)  
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Data Association Is Ambiguous 
And Not Always Perfect 
!  Places that look identical 
!  Similar rooms in the same building 
!  Cluttered scenes 
!  GPS multi pass (signal reflections) 
!  … 
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Example 

3D world belief about the 
robot’s pose 
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Such Situations Occur In Reality 
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Committing To The Wrong Mode 
Can Lead to Mapping Failures  
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Data Association Is Ambiguous 
And Not Always Perfect 
!  Places that look identical 
!  Similar rooms in the same building 
!  Cluttered scenes 
!  GPS multi pass (signal reflections) 
!  … 

 
How to incorporate that  
into graph-based SLAM? 
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Mathematical Model 

!  We can express a multi-modal belief 
by a sum of Gaussians 

Sum of Gaussians with k modes 
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Problem 

!  During error minimization, we consider 
the negative log likelihood 

The log cannot be moved inside the sum! 
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Max-Mixture Approximation 

!  Instead of computing the sum of 
Gaussians at   , compute the 
maximum of the Gaussians 
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Max-Mixture Approximation 

approximation error 
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Log Likelihood Of The Max-
Mixture Formulation 
!  The log can be moved inside the max 

operator 

or: 
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Integration 

!  With the max-mixture formulation, the 
log likelihood again results in local 
quadratic forms 

!  Easy to integrate in the optimizer: 
1. Evaluate all k components  
2. Select the component with the 

maximum log likelihood 
3. Perform the optimization as before 

using only the max components  
(as a single Gaussian) 
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Performance (Gauss vs. MM) 
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Runtime 
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MM For Outlier Rejection 
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Max-Mixture and Outliers 

!  MM formulation is useful for multi-
model constraints (D.A. ambiguities) 

!  MM is also a handy tool outliers  
(D.A. failures) 

!  Here, one mode represents the edge 
and a second model uses a  flat 
Gaussian for the outlier hypothesis 
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Performance (1 outlier) 

Gauss-Newton MM Gauss-Newton 
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Performance (10 outliers) 

Gauss-Newton MM Gauss-Newton 
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Performance (100 outliers) 

Gauss-Newton MM Gauss-Newton 
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Standard Gaussian Least 
Squares 
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Dynamic Covariance Scaling 
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Scaling Parameter  
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Dynamic Covariance Scaling 
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Dynamic Covariance Scaling 

Both have  
squared error 
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Dynamic Covariance Scaling 

Original 
error 

Scaled 
error 
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Dynamic Covariance Scaling 

Linearization 
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Dynamic Covariance Scaling 
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Optimizing With Outliers  

!  Assuming a Gaussian error in the 
constraints is not always realistic 

!  Large errors are problematic  
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Robust M-Estimators 

!  Assume non-normally-distributed 
noise 

!  Intuitively: PDF with “heavy tails” 
!        function used to define the PDF 

!  Minimizing the neg. log likelihood  
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Different Rho Functions 

!  Gaussian: 
!  Absolute values (L1 norm): 
!  Huber M-estimator 

!  Several others (Tukey, Cauchy, Blake-
Zisserman, Corrupted Gaussian, …)  
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Huber 

!  Mixture of a quadratic and a linear 
function 
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Different Rho Functions 

L1 norm Huber Tukey 

Cauchy Blake-Zisserman Corrupted G. 
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MM Cost Function For Outliers 
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Robust Estimation 

!  Choice of the rho function depends on 
the problem at hand 

!  Huber function is often used 
!  MM for outlier handling is similar to a 

corrupted Gaussian 
!  MM additionally supports multi-model 

constraints 
!  Dynamic Covariance Scaling is a 

robust M-estimator 
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Conclusions 

!  Sum of Gaussians cannot be used 
easily in the optimization framework 

!  Max-Mixture formulation approximates 
the sum by the max operator  

!  This allows for handling data 
association ambiguities and failures 

!  Minimal performance overhead 
!  Minimal code changes for integration 
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