Robot Mapping

Max-Mixture and Robust Least Squares for SLAM

Cyrill Stachniss

Courtesy for most images: Pratik Agarwal

Least Squares in General

- Minimizes the sum of the squared errors
- Strong relation to ML estimation in the Gaussian case

Problems:

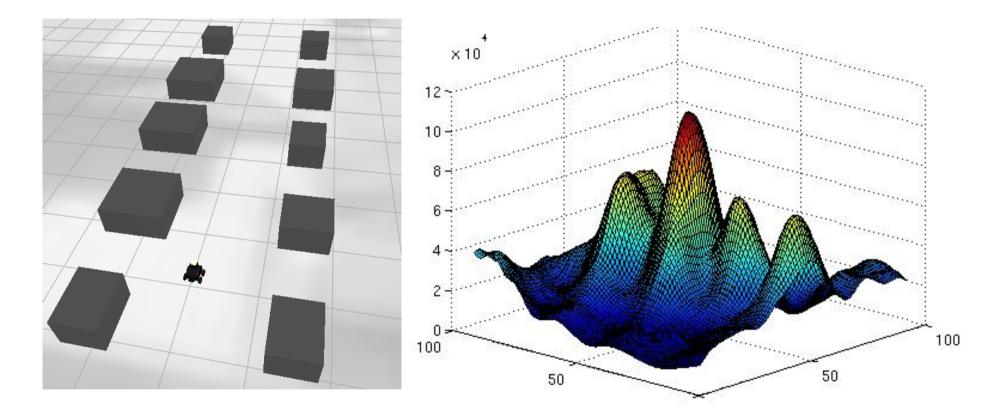
- Sensitive to outliers
- Only Gaussians (single modes)

Data Association Is Ambiguous And Not Always Perfect

- Places that look identical
- Similar rooms in the same building
- Cluttered scenes
- GPS multi pass (signal reflections)

• • • •

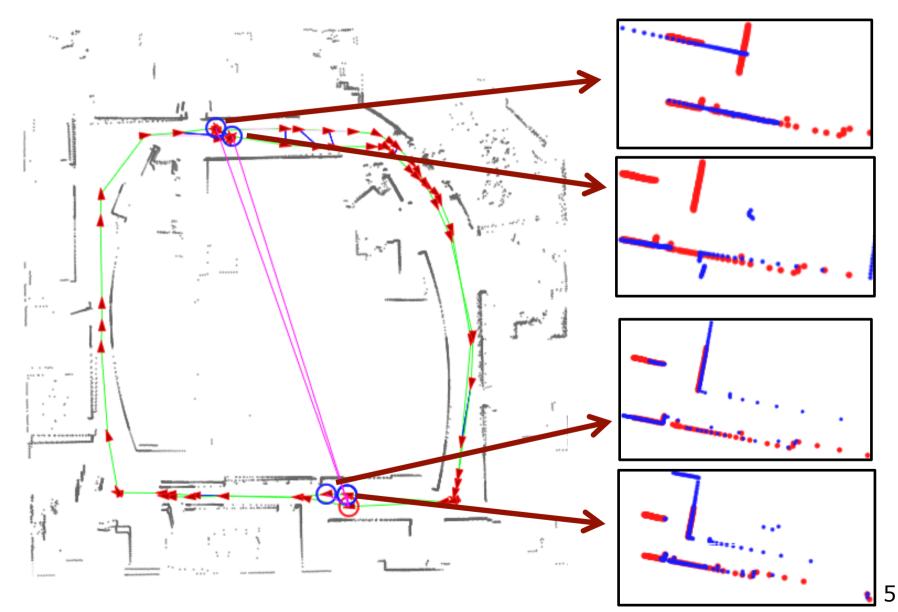
Example



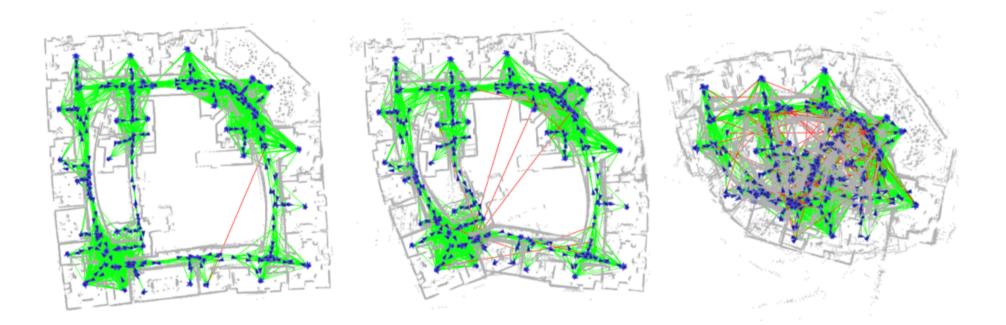
3D world

belief about the robot's pose

Such Situations Occur In Reality



Committing To The Wrong Mode Can Lead to Mapping Failures



Data Association Is Ambiguous And Not Always Perfect

- Places that look identical
- Similar rooms in the same building
- Cluttered scenes
- GPS multi pass (signal reflections)

How to incorporate that into graph-based SLAM?

Data Association Is Ambiguous And Not Always Perfect

- Places that look identical
- Similar rooms in the same building
- Cluttered scenes

. . .

GPS multi pass (signal reflections)

How to incorporate that into graph-based SLAM?

Mathematical Model

 We can express a multi-modal belief by a sum of Gaussians

$$p(\mathbf{z} \mid \mathbf{x}) = \eta \exp(-\frac{1}{2}\mathbf{e}_{ij}^T \Omega_{ij} \mathbf{e}_{ij})$$

$$p(\mathbf{z} \mid \mathbf{x}) = \sum_{k} w_k \eta_k \exp(-\frac{1}{2} \mathbf{e}_{ij_k}^T \Omega_{ij_k} \mathbf{e}_{ij_k})$$

Sum of Gaussians with k modes

Problem

 During error minimization, we consider the negative log likelihood

$$-\log p(\mathbf{z} \mid \mathbf{x}) = \frac{1}{2} \mathbf{e}_{ij}^T \Omega_{ij} \mathbf{e}_{ij} - \log \eta$$

$$-\log p(\mathbf{z} \mid \mathbf{x}) = -\log \sum_{k} w_k \eta_k \exp(-\frac{1}{2} \mathbf{e}_{ij_k}^T \mathbf{\Omega}_{ij_k} \mathbf{e}_{ij_k})$$

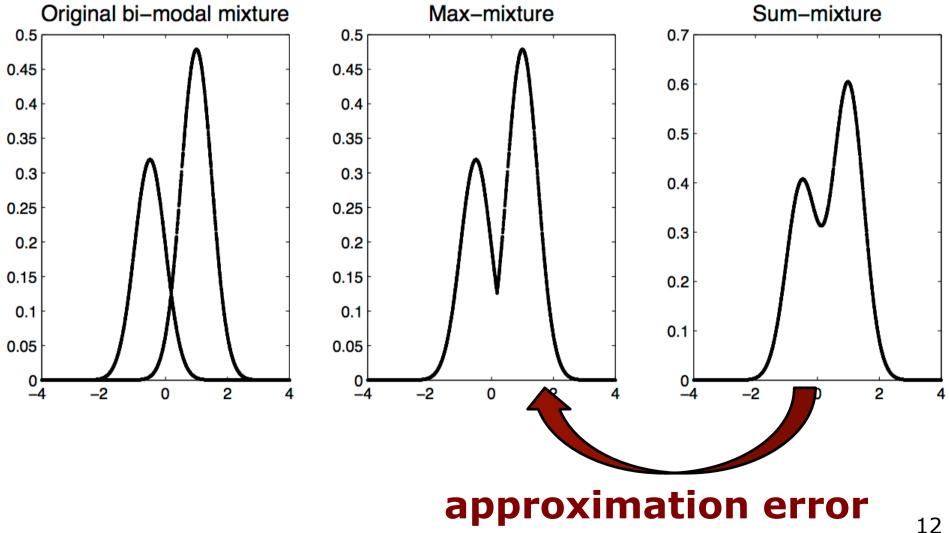
The log cannot be moved inside the sum!

Max-Mixture Approximation

 Instead of computing the sum of Gaussians at X, compute the maximum of the Gaussians

$$p(\mathbf{z} \mid \mathbf{x}) = \sum_{k} w_{k} \eta_{k} \exp(-\frac{1}{2} \mathbf{e}_{ij_{k}}^{T} \mathbf{\Omega}_{ij_{k}} \mathbf{e}_{ij_{k}})$$
$$\simeq \max_{k} w_{k} \eta_{k} \exp(-\frac{1}{2} \mathbf{e}_{ij_{k}}^{T} \mathbf{\Omega}_{ij_{k}} \mathbf{e}_{ij_{k}})$$

Max-Mixture Approximation



Log Likelihood Of The Max-Mixture Formulation

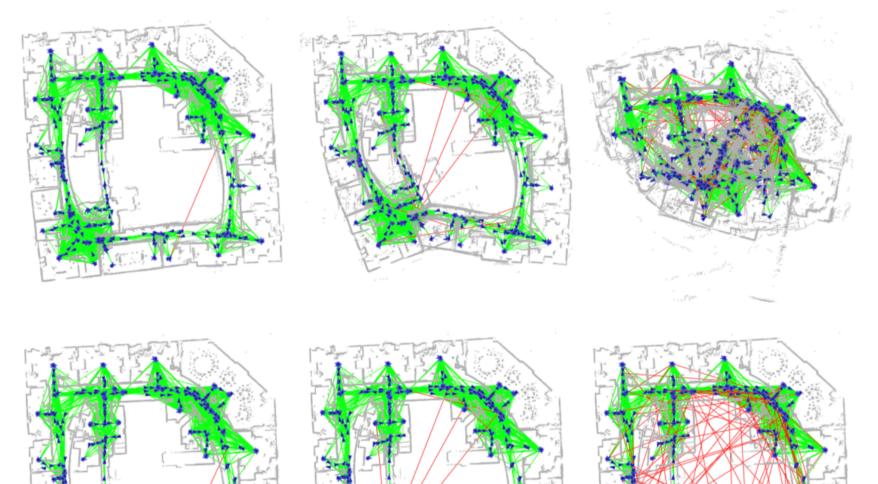
 The log can be moved inside the max operator

 $p(\mathbf{z} \mid \mathbf{x}) \simeq \max_{k} w_{k} \eta_{k} \exp(-\frac{1}{2} \mathbf{e}_{ij_{k}}^{T} \mathbf{\Omega}_{ij_{k}} \mathbf{e}_{ij_{k}})$ \downarrow $\log p(\mathbf{z} \mid \mathbf{x}) \simeq \max_{k} -\frac{1}{2} \mathbf{e}_{ij_{k}}^{T} \mathbf{\Omega}_{ij_{k}} \mathbf{e}_{ij_{k}} + \log(w_{k} \eta_{k})$ $\mathsf{or:} -\log p(\mathbf{z} \mid \mathbf{x}) \simeq \min_{k} \frac{1}{2} \mathbf{e}_{ij_{k}}^{T} \mathbf{\Omega}_{ij_{k}} \mathbf{e}_{ij_{k}} - \log(w_{k} \eta_{k})$

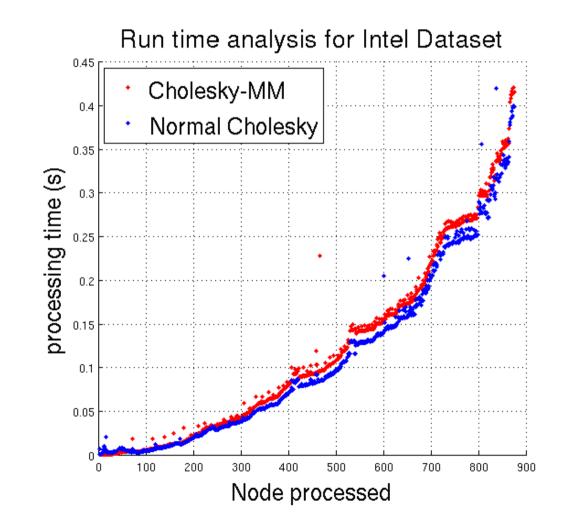
Integration

- With the max-mixture formulation, the log likelihood again results in local quadratic forms
- Easy to integrate in the optimizer:
- 1. Evaluate all k components
- Select the component with the maximum log likelihood
- Perform the optimization as before using only the max components (as a single Gaussian)

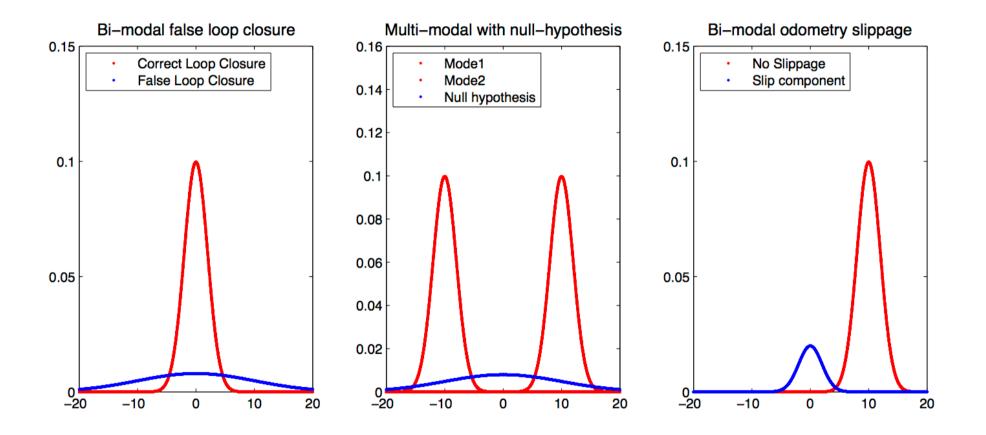
Performance (Gauss vs. MM)



Runtime



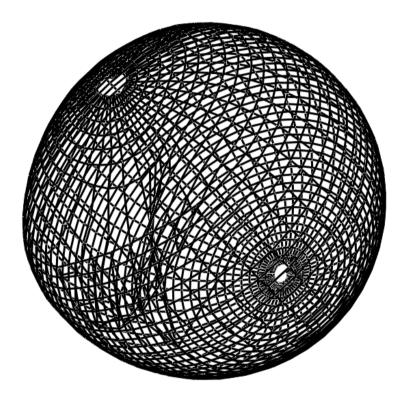
MM For Outlier Rejection

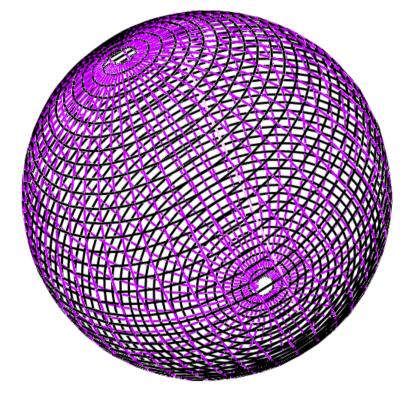


Max-Mixture and Outliers

- MM formulation is useful for multimodel constraints (D.A. ambiguities)
- MM is also a handy tool outliers (D.A. failures)
- Here, one mode represents the edge and a second model uses a flat Gaussian for the outlier hypothesis

Performance (1 outlier)

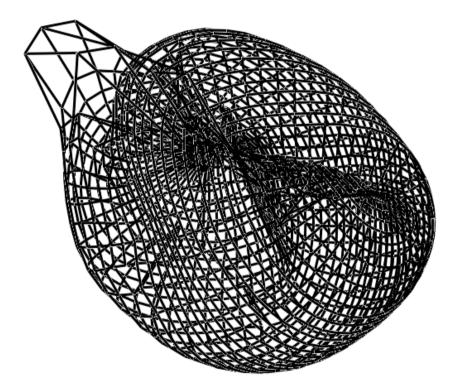


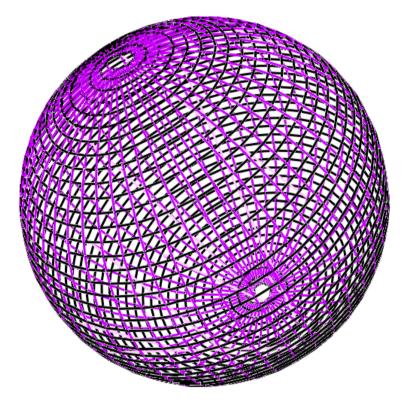


Gauss-Newton

MM Gauss-Newton

Performance (10 outliers)

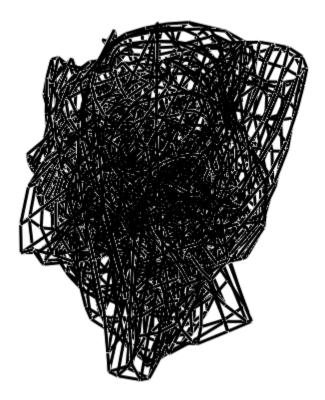


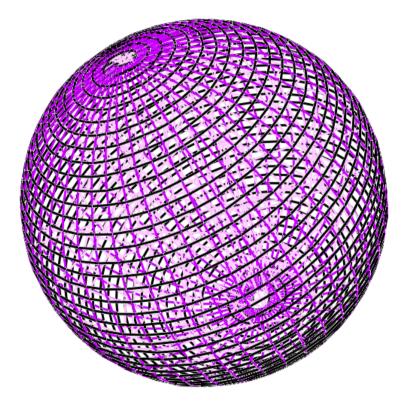


Gauss-Newton

MM Gauss-Newton

Performance (100 outliers)





Gauss-Newton

MM Gauss-Newton

Standard Gaussian Least Squares

$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\chi^2_{ij}}$$

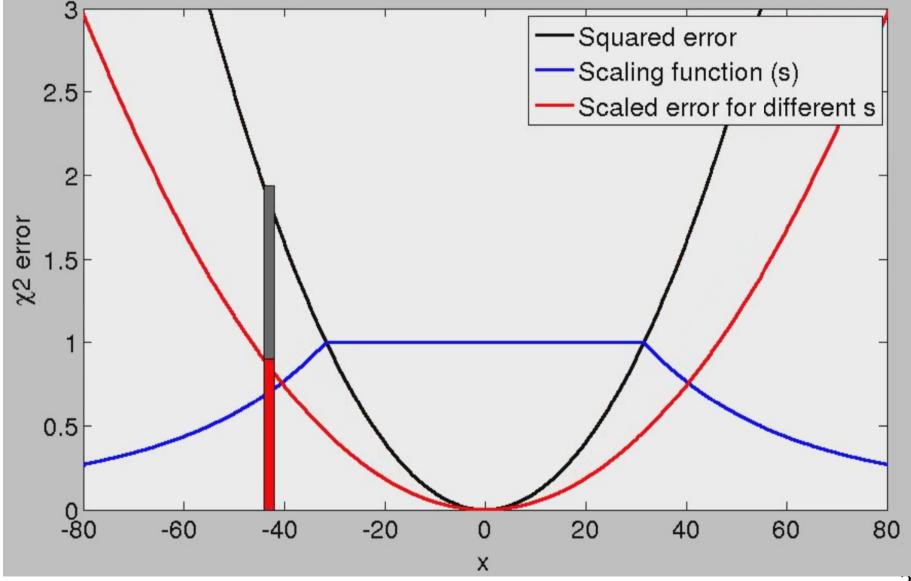
$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \underbrace{\mathbf{e}_{ij}(X)^T \Omega_{ij} \mathbf{e}_{ij}(X)}_{\chi^2_{ij}}$$

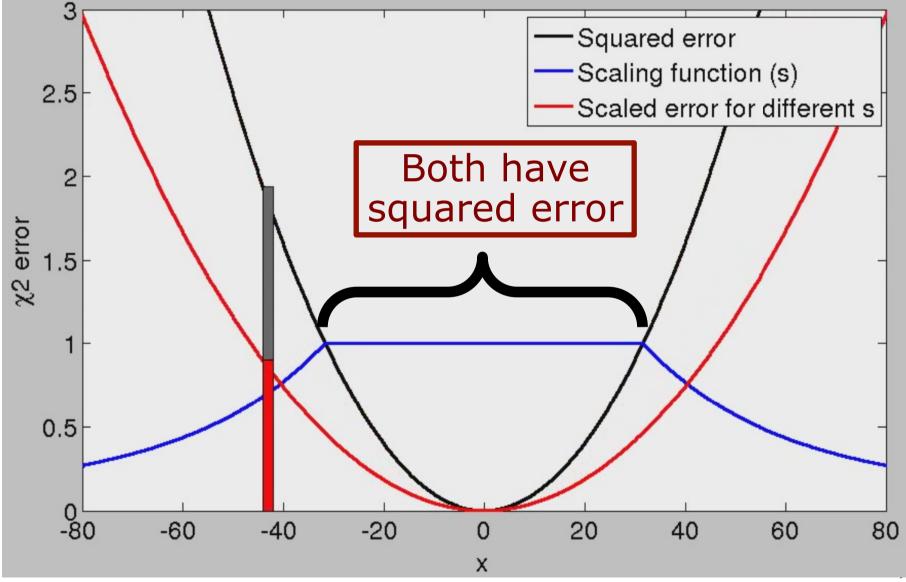
$$X^* = \underset{X}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$$

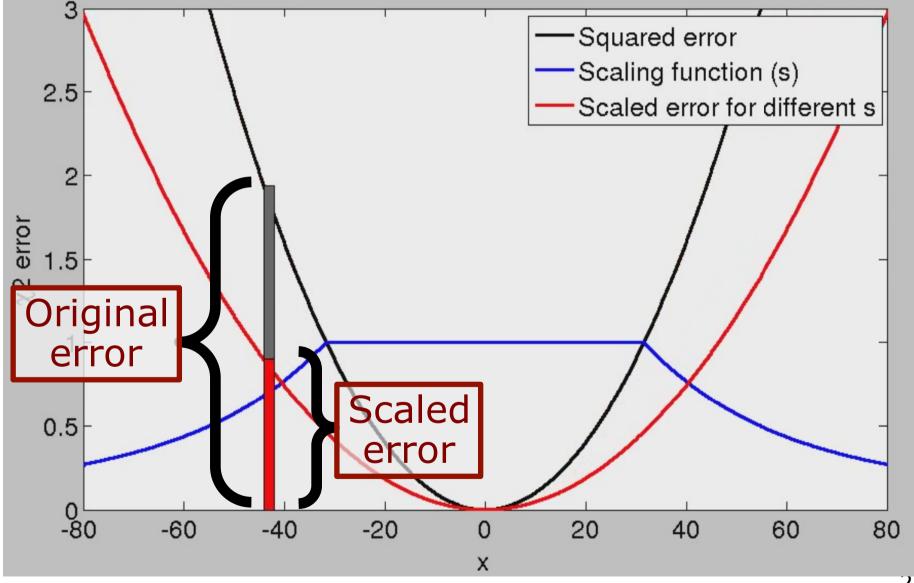
23

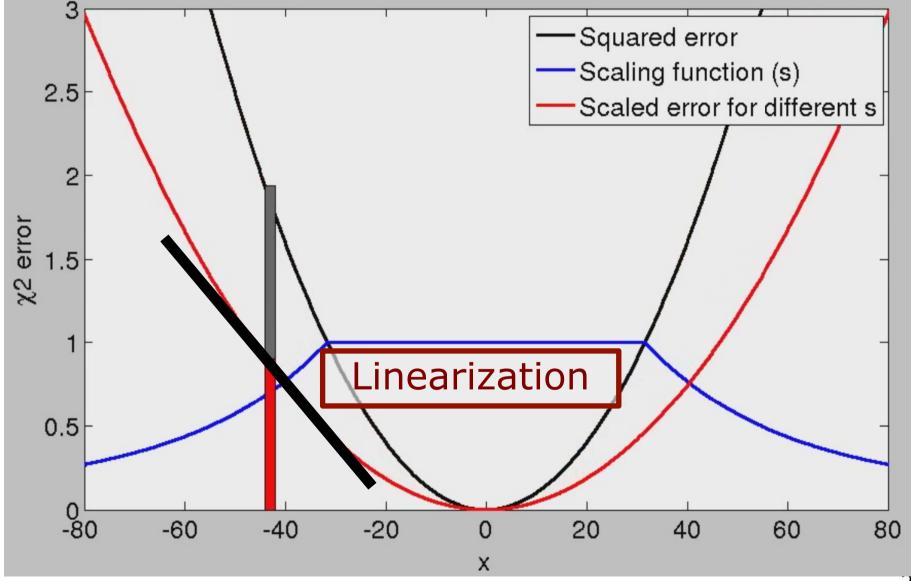
Scaling Parameter $X^* = \operatorname{argmin}_{X} \sum_{ij} \mathbf{e}_{ij} (X)^T \left(s_{ij}^2 \Omega_{ij} \right) \mathbf{e}_{ij} (X)$

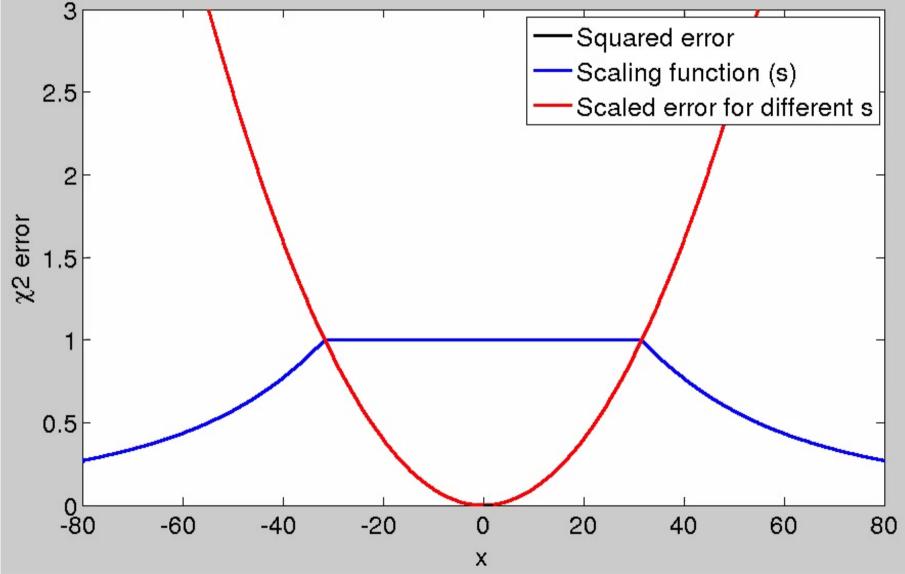
$$s_{ij} = \min\left(1, \frac{2\Phi}{\Phi + \chi_{ij}^2}\right)$$





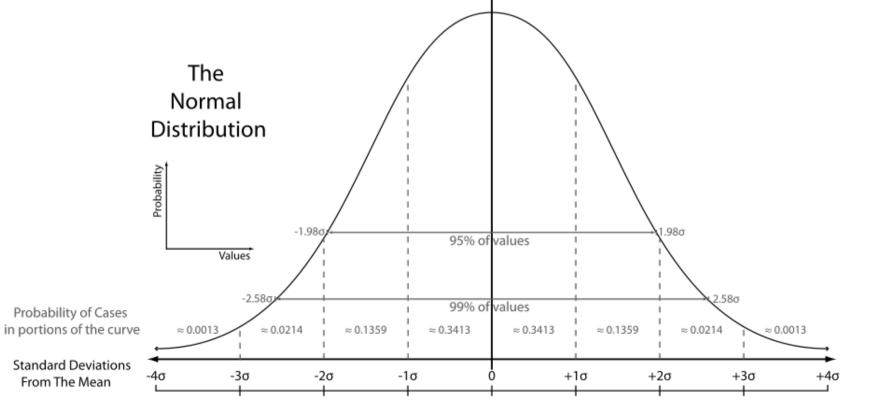






Optimizing With Outliers

- Assuming a Gaussian error in the constraints is not always realistic
- Large errors are problematic



Robust M-Estimators

- Assume non-normally-distributed noise
- Intuitively: PDF with "heavy tails"
- $\rho(e)$ function used to define the PDF

$$p(e) = \exp(-\rho(e))$$

Minimizing the neg. log likelihood

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_i \rho(e_i(\mathbf{x}))$$

Different Rho Functions

• Gaussian:
$$\rho(e) = e^2$$

- Absolute values (L1 norm): $\rho(e) = |e|$
- Huber M-estimator

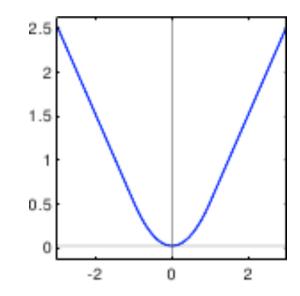
$$\rho(e) = \begin{cases} \frac{e^2}{2} & \text{if } |e| < c \\ c(|e| - \frac{c}{2}) & \text{otherwise} \end{cases}$$

 Several others (Tukey, Cauchy, Blake-Zisserman, Corrupted Gaussian, ...)

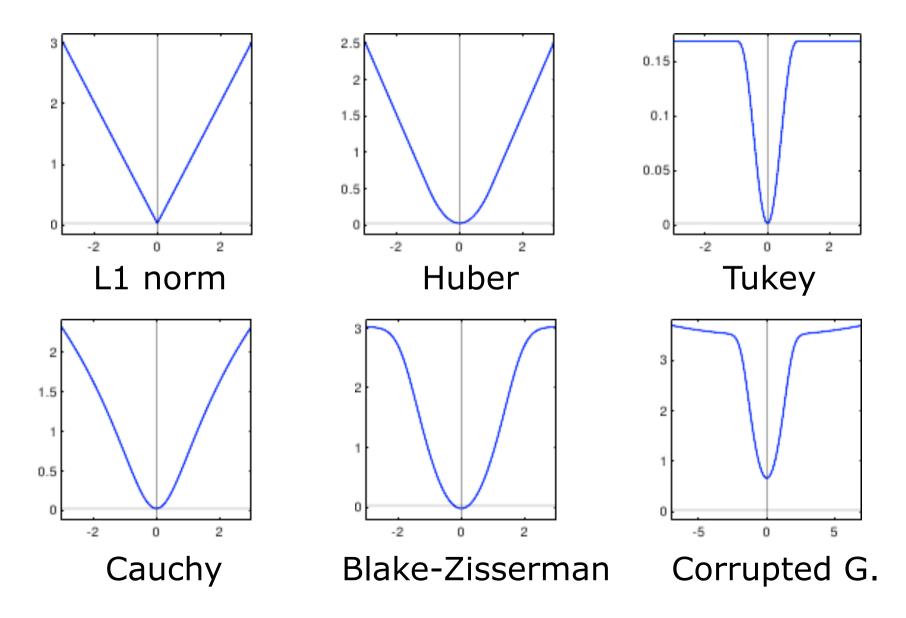
Huber

 Mixture of a quadratic and a linear function

$$\rho(e) = \begin{cases} \frac{e^2}{2} & \text{if } |e| < c \\ c(|e| - \frac{c}{2}) & \text{otherwise} \end{cases}$$

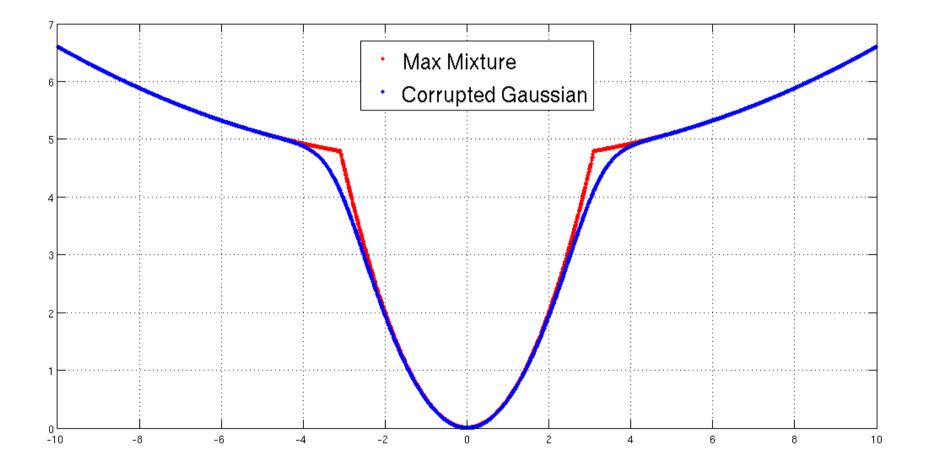


Different Rho Functions



34

MM Cost Function For Outliers



Robust Estimation

- Choice of the rho function depends on the problem at hand
- Huber function is often used
- MM for outlier handling is similar to a corrupted Gaussian
- MM additionally supports multi-model constraints
- Dynamic Covariance Scaling is a robust M-estimator

Conclusions

- Sum of Gaussians cannot be used easily in the optimization framework
- Max-Mixture formulation approximates the sum by the max operator
- This allows for handling data association ambiguities and failures
- Minimal performance overhead
- Minimal code changes for integration

Literature

Max-Mixture Approach:

 Olson, Agarwal: "Inference on Networks of Mixtures for Robust Robot Mapping"

Dynamic Covariance Scaling:

 Agarwal, Tipaldi, Spinello, Stachniss, Burgard: "Robust Map Optimization Using Dynamic Covariance Scaling"