Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 8 Due: 8th January 2014

Exercise 8.1 (Runtime)

You have implemented an algorithm that needs exactly f(n) steps to terminate, where n is the size of the input. Assume that on your machine each step takes $1\mu s$.

For which maximal input size does your algorithm terminate within *one* day? Which input size can it maximally process in 10 days? Answer these (two!) questions for the following runtimes:

(a)
$$f(n) = n$$

(b)
$$f(n) = n^2$$

(c)
$$f(n) = 2^n$$

- (d) $f(n) = n^2 + n$
- (e) (Extra, not mandatory) $f(n) = n \log n$ Hint: To compute the value of f^{-1} , you can implement the bisection method.

Exercise 8.2 (Big-O)

Consider the Turing machine below. The input alphabet is $\Sigma = \mathbb{N} = \{1, 2, 3, ...\}$. The operator |w| denotes the length of the string w, the relation < is the smaller relation on the natural numbers.

$$M = \text{"On input string } w":$$

for $i = 1$ to $|w|$
for $j = |w|$ downto $i + 1$
if $w_j < w_{j-1}$
swap w_j and w_{j-1}
endif
endfor
endfor

Assume that the runtime of a swap and of a comparison of two natural numbers is constant.

- (a) What is the smallest exponent $k \in \mathbb{R}$ so that the runtime of the Turing machine M is in $O(|w|^k)$? Justify your answer.
- (b) What does M compute (i.e. what is written on the tape when M halts)?

Exercise 8.3 (Big-O)

Characterise the relationship between f(n) and g(n) in the following examples using the O, Θ or Ω -notation.

1. $f(n) = n^{0.99998}$	$g(n) = \sqrt{n}$
2. $f(n) = 2^{\log^2(n)}$	$g(n) = \sum_{k=1}^{n^2} \frac{n}{2^k}$
3. $f(n) = n \cdot log_2 n$	$g(n) = \sqrt[3]{n}$
4. $f(n) = \sqrt{n}$	g(n) = 1000n

5. (Extra, not mandatory) $f(n) = \frac{n^{n+1}}{(n+1)^n}$, $g(n) = \sqrt[n]{n!}$

Hint: Stirling's approximation could be useful here.