Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Department of Computer Science
Winter semester 2014/2015

Exercise Sheet 0

Exercise 0.1 (Proof by contradiction)
Prove the following statement by contradiction
Let $q \in \mathbb{Q}$ and $x \in \mathbb{R} \backslash \mathbb{Q}$, then $q-x \in \mathbb{R} \backslash \mathbb{Q}$.
That is, the difference of any rational number and any irrational number is irrational.

Solution

We want to derive a contradiction. For this, we assume that $q-x$ is a rational number. According to the definition of a rational number, the following statements hold

$$
\begin{aligned}
q=\frac{a}{b} & \text { for some integer } a, b \text { such that } b \neq 0 \\
q-x=\frac{c}{d} & \text { for some integer } c, d \text { such that } d \neq 0
\end{aligned}
$$

By substitution, we have

$$
\begin{aligned}
q-x & =\frac{c}{d} \\
\frac{a}{b}-x & =\frac{c}{d} \\
x & =\frac{a}{b}-\frac{c}{d} \\
& =\frac{a d-b c}{b d}
\end{aligned}
$$

Note that $a d-b c$ is integer as it is obtained as sum and/or product of integers $(a, c \in \mathbb{Z}$, $b, d \in \mathbb{Z} \backslash\{0\})$. Moreover, $b d \neq 0$, since $b \neq 0$ and $d \neq 0$. Therefore, by definition of rational numbers, x is rational. This contradicts our assumption and concludes the proof.

Note: One could show the statement above even more quickly. If p, q are two rational numbers, so is their difference. Hence, if q and $q-x$ were rational, $q-(q-x)=x$ would be rational too, which leads to a contradiction.

Exercise 0.2 (Proofs by induction)
Prove by induction that the following statements hold for every $n \in \mathbb{N}^{+}$(the set of positive integers).

- $\sum_{i=1}^{n} i^{2}=\frac{n \cdot(n+1) \cdot(2 n+1)}{6}$
- $1-x^{n}=(1-x)\left(1+x+\ldots+x^{n-1}\right)$.

Please make clear what is the base case, the induction hypothesis and the induction step.

- First statement.
- Basis $n=1: \sum_{i=1}^{n} i^{2}=1^{2}=1=\frac{1 \cdot(1+1) \cdot(2 \cdot 1+1)}{6}$
- Induction hypothesis: For $n-1$ it holds that $\sum_{i=1}^{n-1} i^{2}=\frac{(n-1) \cdot n \cdot(2 n-1)}{6}$.
- Induction step:

$$
\begin{aligned}
\sum_{i=1}^{n} i^{2} & =\left(\sum_{i=1}^{n-1} i^{2}\right)+n^{2} \\
& =\frac{(n-1) n(2 n-1)}{6}+n^{2} \\
& =\frac{2 n^{3}-3 n^{2}+n+6 n^{2}}{6} \\
& =\frac{2 n^{3}+3 n^{2}+n}{6} \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

- Second statement.
- Basis $n=1$: trivial.
- induction hypothesis: For $n-1$, it holds that $1-x^{n-1}=(1-x)\left(1+x+\ldots+x^{n-2}\right)$.
- Induction step:

$$
\begin{aligned}
(1-x)\left(1+x+\ldots+x^{n-1}\right) & =(1-x)\left(1+x+\ldots+x^{n-2}\right)+(1-x) x^{n-1} \\
& =1-x^{n-1}+x^{n-1}-x^{n}= \\
& =1-x^{n}
\end{aligned}
$$

Exercise 0.3 (Sets)

Let E_{1}, \ldots, E_{N} be an arbitrary finite collection of sets. Show that

$$
F \cup\left(\bigcap_{n=1}^{N} E_{n}\right)=\bigcap_{n=1}^{N}\left(F \cup E_{n}\right)
$$

Solution

To show that two sets X, Y are equal, a standard approach is to show that both sets are subsets one of the other, that is, $X \subseteq Y$ and $Y \subseteq X$ as well.
(\subseteq) To prove this bit we need to show that each element of $F \cup\left(\bigcap_{n=1}^{N} E_{n}\right)$ is also an element of $\bigcap_{n=1}^{N}\left(F \cup E_{n}\right)$. To see this, let $x \in F \cup\left(\bigcap_{n=1}^{N} E_{n}\right)$, then only two cases are possible:
(i) $x \in F$, then $x \in F \cup E_{1}, \ldots, F \cup E_{N}$ and so it belongs to their intersection.
(ii) $x \notin F$, that is, x must be an element of $\bigcap_{n=1}^{N} E_{n}$. As a consequence, x lies in every E_{i} $(i=1, \ldots, N)$ and thus $x \in F \cup E_{1}, \ldots, F \cup E_{N}$. That is x belongs to the intersection of $F \cup E_{i}(i=1, \ldots, N)$.
(\supseteq) To show the other inclusion we proceed similarly. Let x be an element in $\bigcap_{n=1}^{N}\left(F \cup E_{n}\right)$. Again, only the two scenarios described above must be discussed:
(i) $x \in F$. In such case, it is trivial to see that x belongs to $F \cup\left(\bigcap_{n=1}^{N} E_{n}\right)$.
(ii) $x \notin F$. Then $x \in E_{i}$ for every $i=1, \ldots, N$. Indeed, if there were a set E_{k} so that $x \notin E_{k}$, than $x \notin F \cup E_{k}$ which contradicts the fact that x do belong to $\bigcap_{n=1}^{N}\left(F \cup E_{n}\right)$. This concludes the argument.

Proof is concluded.

