Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 0

Exercise 0.1 (Proof by contradiction)

Prove the following statement by *contradiction*

Let $q \in \mathbb{Q}$ and $x \in \mathbb{R} \setminus \mathbb{Q}$, then $q - x \in \mathbb{R} \setminus \mathbb{Q}$.

That is, the difference of any rational number and any irrational number is irrational.

Solution

We want to derive a contradiction. For this, we assume that q - x is a rational number. According to the definition of a rational number, the following statements hold

 $\begin{array}{ll} q=\frac{a}{b} & \text{ for some integer } a,b \text{ such that } b\neq 0\\ q-x=\frac{c}{d} & \text{ for some integer } c,d \text{ such that } d\neq 0 \end{array}$

By substitution, we have

$$q - x = \frac{c}{d}$$
$$\frac{a}{b} - x = \frac{c}{d}$$
$$x = \frac{a}{b} - \frac{c}{d}$$
$$= \frac{ad - bc}{bd}$$

Note that ad - bc is integer as it is obtained as sum and/or product of integers $(a, c \in \mathbb{Z}, b, d \in \mathbb{Z} \setminus \{0\})$. Moreover, $bd \neq 0$, since $b \neq 0$ and $d \neq 0$. Therefore, by definition of rational numbers, x is rational. This contradicts our assumption and concludes the proof.

Note: One could show the statement above even more quickly. If p, q are two rational numbers, so is their difference. Hence, if q and q - x were rational, q - (q - x) = x would be rational too, which leads to a contradiction.

Exercise 0.2 (Proofs by induction)

Prove by induction that the following statements hold for every $n \in \mathbb{N}^+$ (the set of positive integers).

- $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$
- $1 x^n = (1 x)(1 + x + \dots + x^{n-1}).$

Please make clear what is the base case, the induction hypothesis and the induction step.

- First statement.
 - Basis n = 1: $\sum_{i=1}^{n} i^2 = 1^2 = 1 = \frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
 - Induction hypothesis: For n-1 it holds that $\sum_{i=1}^{n-1} i^2 = \frac{(n-1)\cdot n \cdot (2n-1)}{6}$.
 - Induction step:

$$\sum_{i=1}^{n} i^2 = \left(\sum_{i=1}^{n-1} i^2\right) + n^2$$
$$= \frac{(n-1)n(2n-1)}{6} + n^2$$
$$= \frac{2n^3 - 3n^2 + n + 6n^2}{6}$$
$$= \frac{2n^3 + 3n^2 + n}{6}$$
$$= \frac{n(n+1)(2n+1)}{6}$$

- Second statement.
 - Basis n = 1: trivial.
 - induction hypothesis: For n-1, it holds that $1-x^{n-1} = (1-x)(1+x+\ldots+x^{n-2})$.
 - Induction step:

$$(1-x)(1+x+\ldots+x^{n-1}) = (1-x)(1+x+\ldots+x^{n-2}) + (1-x)x^{n-1}$$
$$= 1-x^{n-1}+x^{n-1}-x^n =$$
$$= 1-x^n.$$

Exercise 0.3 (Sets)

Let $E_1, ..., E_N$ be an arbitrary finite collection of sets. Show that

$$F \cup \left(\bigcap_{n=1}^{N} E_n\right) = \bigcap_{n=1}^{N} (F \cup E_n).$$

 $\underline{Solution}$

To show that two sets X, Y are equal, a standard approach is to show that both sets are subsets one of the other, that is, $X \subseteq Y$ and $Y \subseteq X$ as well.

- (⊆) To prove this bit we need to show that each element of $F \cup \left(\bigcap_{n=1}^{N} E_n\right)$ is also an element of $\bigcap_{n=1}^{N} (F \cup E_n)$. To see this, let $x \in F \cup \left(\bigcap_{n=1}^{N} E_n\right)$, then only two cases are possible:
 - (i) $x \in F$, then $x \in F \cup E_1, ..., F \cup E_N$ and so it belongs to their intersection.
 - (ii) $x \notin F$, that is, x must be an element of $\bigcap_{n=1}^{N} E_n$. As a consequence, x lies in every E_i (i = 1, ..., N) and thus $x \in F \cup E_1, ..., F \cup E_N$. That is x belongs to the intersection of $F \cup E_i$ (i = 1, ..., N).
- (⊇) To show the other inclusion we proceed similarly. Let x be an element in $\bigcap_{n=1}^{N} (F \cup E_n)$. Again, only the two scenarios described above must be discussed:

- (i) $x \in F$. In such case, it is trivial to see that x belongs to $F \cup \left(\bigcap_{n=1}^{N} E_n\right)$.
- (ii) $x \notin F$. Then $x \in E_i$ for every i = 1, ..., N. Indeed, if there were a set E_k so that $x \notin E_k$, than $x \notin F \cup E_k$ which contradicts the fact that x do belong to $\bigcap_{n=1}^{N} (F \cup E_n)$. This concludes the argument.

Proof is concluded.