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Exercise 0.1 (Proof by contradiction)

Prove the following statement by contradiction

Let q ∈ Q and x ∈ R \Q, then q − x ∈ R \Q.

That is, the difference of any rational number and any irrational number is irrational.

Solution
We want to derive a contradiction. For this, we assume that q − x is a rational number. Accord-
ing to the definition of a rational number, the following statements hold

q = a
b for some integer a, b such that b 6= 0

q − x = c
d for some integer c, d such that d 6= 0

By substitution, we have

q − x =
c

d
a

b
− x =

c

d

x =
a

b
− c

d

=
ad− bc

bd

Note that ad − bc is integer as it is obtained as sum and/or product of integers (a, c ∈ Z,
b, d ∈ Z \ {0}). Moreover, bd 6= 0, since b 6= 0 and d 6= 0. Therefore, by definition of ratio-
nal numbers, x is rational. This contradicts our assumption and concludes the proof.

Note: One could show the statement above even more quickly. If p, q are two rational numbers,
so is their difference. Hence, if q and q − x were rational, q − (q − x) = x would be rational too,
which leads to a contradiction.

Exercise 0.2 (Proofs by induction)

Prove by induction that the following statements hold for every n ∈ N+ (the set of positive
integers).

•
∑n

i=1 i
2 = n·(n+1)·(2n+1)

6

• 1− xn = (1− x)(1 + x + ... + xn−1).

Please make clear what is the base case, the induction hypothesis and the induction step.

Solution



• First statement.

– Basis n = 1:
∑n

i=1 i
2 = 12 = 1 = 1·(1+1)·(2·1+1)

6

– Induction hypothesis: For n− 1 it holds that
∑n−1

i=1 i2 = (n−1)·n·(2n−1)
6 .

– Induction step:

n∑
i=1

i2 =

(
n−1∑
i=1

i2

)
+ n2

=
(n− 1)n(2n− 1)

6
+ n2

=
2n3 − 3n2 + n + 6n2

6

=
2n3 + 3n2 + n

6

=
n(n + 1)(2n + 1)

6

• Second statement.

– Basis n = 1: trivial.

– induction hypothesis: For n− 1, it holds that 1− xn−1 = (1− x)(1 + x + ... + xn−2).

– Induction step:

(1− x)(1 + x + ... + xn−1) = (1− x)(1 + x + ... + xn−2) + (1− x)xn−1

= 1− xn−1 + xn−1 − xn =

= 1− xn.

Exercise 0.3 (Sets)

Let E1, ..., EN be an arbitrary finite collection of sets. Show that

F ∪

(
N⋂

n=1

En

)
=

N⋂
n=1

(F ∪ En).

Solution
To show that two sets X,Y are equal, a standard approach is to show that both sets are subsets
one of the other, that is, X ⊆ Y and Y ⊆ X as well.

(⊆) To prove this bit we need to show that each element of F ∪
(⋂N

n=1 En

)
is also an element

of
⋂N

n=1(F ∪ En). To see this, let x ∈ F ∪
(⋂N

n=1 En

)
, then only two cases are possible:

(i) x ∈ F , then x ∈ F ∪ E1, ..., F ∪ EN and so it belongs to their intersection.

(ii) x /∈ F , that is, x must be an element of
⋂N

n=1 En. As a consequence, x lies in every Ei

(i = 1, ..., N) and thus x ∈ F ∪E1, ..., F ∪EN . That is x belongs to the intersection of
F ∪ Ei (i = 1, ..., N).

(⊇) To show the other inclusion we proceed similarly. Let x be an element in
⋂N

n=1(F ∪ En).
Again, only the two scenarios described above must be discussed:



(i) x ∈ F . In such case, it is trivial to see that x belongs to F ∪
(⋂N

n=1 En

)
.

(ii) x /∈ F . Then x ∈ Ei for every i = 1, ..., N . Indeed, if there were a set Ek so that

x /∈ Ek, than x /∈ F ∪Ek which contradicts the fact that x do belong to
⋂N

n=1(F ∪En).
This concludes the argument.

Proof is concluded.


