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Exercise 1.1 (Graphs)

Let G := (G,E) be an undirected graph. We define the degree of a vertex g ∈ G to be the number
of edges incident to g. We say that G is k-regular (k ≥ 0) if each vertex g ∈ G has degree k, or,
equivalently, if every vertex is directly connected by an edge to exactly k other vertices.

Prove that for every integer k ≥ 2 there exists a k-regular graph Gk := (Gk, Ek) so that |Gk| = 2k
and diameter of Gk is 2.

We recall that the diameter is the longest shortest path between any two vertices of the graph.

Proof
We will show the statement in two ways: by construction and by induction.

Induction

– Base: k = 2, it is enough to provide an example of a graph with 4 vertices satisfying
the above conditions. An example of such graph is the following:

1 2

3 4

It is apparent that each vertex has degree 2 (exactly 2 neighbours) and diameter is 2
since any node is connected to any other by a path of length at most 2 and the paths
from 1 to 4 are exactly of length 2.

• Induction hypothesis: for k − 1 there exists a k − 1-regular graph with 2k − 2 vertices and
whose diameter is 2.

• Induction step Let Gk−1 := (Gk−1, Ek−1) one graph that satisfies the above conditions.
We define a graph Gk := (Gk, Ek) as follows: we add two vertex to Gk−1, formally Gk =
Gk−1 ∪ {g1, g2}, furthermore, since the number of nodes of Gk−1 is even, we connect half of
its node with g1 and the other half with g2. Moreover we connect g1 directly with g2. As a
consequence:

– |Gk| = |Gk−1|+ 2 = 2k

– Gk is k-regular. To understand this, we need to observe that if g ∈ Gk−1 ⊂ Gk than g
has exactly k − 1 + 1 neighbours (k − 1 comes from the k − 1-regularity, the +1 bit is
due to the fact that the node is now connected either to g1 or to g2). If g /∈ Gk−1, then
g = g1 or g = g2. Say g = g1, then g1 has again k − 1 + 1 neighbours (the k − 1 bit
comes from the fact that it has been connected to half of the nodes of Gk−1, the +1
part is g2). Similarly for g2.



– We need to show that diameter of Gk is 2 but this is trivial: g1 and g2 are directly
connected as well as g1 is directly connected to half of the nodes of the other graphs.
If we want to reach a node g in the other half, we can just create a path that starts in
g2, goes to g1 and then to the node g. So length 2. Similar argument for g2. So the
diameter do not increase and cannot decrease because no connection amongst the node
of Gk−1 have been added.

Construction: consider the following graph Gk := (Gk, Ek):

1

2

...

2k − 1

2

4

...

2k

Then it is easy to see that

– |Gk| = 2k

– Each node in the left column is connected only to the nodes in the right column, and
to all of them. Similarly for the right column. So each vertex has exactly k neighbours.
Consequently Gk is k-regular.

– Any node of the right column is connected by a path of length 1 to any other node in
the left column. Furthermore, nodes that lie in the same column are not connected one
another, but each couple of nodes are linked by a path of length at most 2, from which
we infer that diameter of Gk is exactly 2.

Exercise 1.2 (DFA)

Consider the following two DFAs (deterministic finite automata) with Σ = {0, 1}:

M1: q0 q1 q2

q3

0

1

1

0
0

1

0, 1



M2: q0 q1 q2

q3

0
1

1

0
0, 1

0, 1

(a) What languages (L1 and L2) do these two automata individually recognize?

Solution
L1 = {w | w starts with 0 and is followed by 0 or more 1s}
L2 = {01, 1}

(b) Give the formal definition for M1.

Solution
M1 = (Q,Σ, δ, q0, F ) with Q = {q0, q1, q2, q3}, Σ = {0, 1}, F = {q1, q2} and δ being given in
the table

δ 0 1
q0 q1 q3

q1 q3 q2

q2 q3 q2

q3 q3 q3

(c) Show that L1 ∪ L2 is also a regular language, by constructing one DFA. Please hand in a
high quality diagram.

Solution
(It can be constructed using the method/hint from the lecture. But, just for simplicity, the
following recognizes L1 ∪ L2 as well.)

q0 q1 q2

q3

0

1

0

1 0, 1

0, 1

Exercise 1.3 (DFA)



(a) Construct a DFA that recognizes the language L with an alphabet Σ = {0, 1}, where
L = {w | w has both an even number of 0’s and an even number of 1’s}

Solution

q0 q1

q2 q3

1

1

0 0

1

1

0 0

(b) Give the state diagram for a DFA accepting the language
L = {w | w starts with 1 and contains 10 or starts with 0 and contains the 01}
The alphabet is Σ = {0, 1}.

Solution

q0 q1

q2

q3
1

0

0

1

0
1

0, 1

Exercise 1.4 (Regular Language)

In this exercise we want to prove that regular languages are closed under intersection and under
complement. The intersection of two languages is defined as L1 ∩ L2. The complement of a
language is defined as the set of all words in Σ∗ which are not in L, i.e. L̄ = Σ∗ \L (Σ∗ is the set
of all words/strings over Σ).
Let L and L′ be regular languages that are recognized by DFAs M = (Q,Σ, δ, q0, F ) and M ′ =
(Q′,Σ′, δ′, q′0, F

′), respectively.

(a) Show that the regular languages are closed under intersection, i.e. give a finite automaton
that recognizes L ∩ L′.



Solution
We provide a suitable DFA M := (Q,Σ, δ, q0, F ) so that L(M) = L ∩ L′. Without loss of
generality we can suppose that Σ = Σ′. Indeed, the general case can be proven by setting
Σ := Σ ∩ Σ′ and minor rearrangements.
Let M be defined as follows:

• Q := Q×Q′.
• Σ := Σ (= Σ′).

• δ so that δ((q, q′), a) := (δ(q, a), δ′(q′, a)).

• q0 := (q0, q
′
0).

• F := F × F ′.

We need to prove that w ∈ L ∩ L′ ⇔ w ∈ L(M).

⇒) Let w = w0 · · ·wn−1 ∈ L ∩ L′, then, w is accepted by both M and M ′. Thus,
by definition of computation it is apparent that there exist two sequences of states
(q0, q1, ..., qn) ⊆ Q and (q′0, q

′
1, ..., q

′
n) ⊆ Q′ so that qi+1 = δ(qi, wi) (i = 0, ..., n− 1) and

qn ∈ F as well as q′i+1 = δ′(q′i, wi) (i = 0, ..., n− 1) and q′n ∈ F ′. Applying w to M , it
is easy to see that

δ((qi, q
′
i+1), wi) = (qi+1, q

′
i+1), (i = 0, ..., n− 1)

(qn, qn′) ∈ F × F ′.

That is, the computations ends in an accept state for the DFA M .

⇐) Let w = w0 · · ·wn−1 ∈ L(M). By definition of computation, there exists a sequence
of states (q0, ..., qn) ∈ Q so that δ(qi, wi) = qi+1 and qn ∈ F . Consequently, setting
qi := (qi, q

′
i) and by definition of the transition function δ, the following relations hold

δ(qi, wi) = qi+1, δ(q′i, wi) = q′i+1,

qn ∈ F q′n ∈ F ′.

Thus, w is accepted by both L and L′. That is w ∈ L ∩ L′.

(b) Show that the regular languages are closed under complement, i.e. give a finite automaton
that recognizes L̄.

Solution

We define the DFA ML̄ := (Q,Σ, δ, q0, Q \ F ). As in part (a), we need to prove that
w ∈ L(ML̄) ⇔ w /∈ L(M). However, it is easy to see that whenever a computation ends in
a accept state for M , then it cannot be accepted by ML̄ as a state is an accept state for M
if and only it’s not an accept state for ML̄. With a similar argument it can be shown that
the opposite statement holds too.


