Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Department of Computer Science
Winter semester 2014/2015

Exercise Sheet 4

Due: 27th November 2014
Exercise 4.1 (Context-free grammars, Chomsky normal form)
(a) Construct a context-free grammar for the following DFA:

Solution:
The language of the DFA is defined by the grammar $G=\left(V, \Sigma, R, S_{0}\right)$ with $V=\left\{S_{0}, S_{1}, S_{2}\right\}$, $\Sigma=\{0,1\}$, and R being the following set of rules:

$$
\begin{aligned}
& S_{0} \rightarrow 0 S_{1} \mid 1 S_{0} \\
& S_{1} \rightarrow 0 S_{2} \mid 1 S_{0} \\
& S_{2} \rightarrow 0 S_{2}\left|1 S_{0}\right| \epsilon
\end{aligned}
$$

(b) Show that the grammar $(\{S\},\{a, b\}, R, S)$ with rules $R=S \rightarrow a S|a S b S| \epsilon$ is ambiguous. Solution:
Consider the string $a a b$. We can give two different leftmost derivations of this string: $S \rightsquigarrow$ $\mathbf{a S} \rightsquigarrow a \mathbf{a S b S} \rightsquigarrow a a b S \rightsquigarrow a a b$ and $S \rightsquigarrow \mathbf{a S b S} \rightsquigarrow a \mathbf{S S} b \rightsquigarrow a a b S \rightsquigarrow a a b$.
(c) Give a grammar in Chomsky Normal Form that generates the same language as the grammar $G=(V, \Sigma, R, S)$ with $V=\{S, X, Y\}, \Sigma=\{a, b, c\}$, and R being the following set of rules:

$$
\begin{aligned}
S & \rightarrow X Y \\
X & \rightarrow a b b|a X b| \epsilon \\
Y & \rightarrow c \mid c Y
\end{aligned}
$$

Solution:
Using the algorithm from the lecture, we get the grammar $G^{\prime}=\left(V^{\prime}, \Sigma, R^{\prime}, S\right)$ with $V=$ $\left\{S, X, X_{1}, X_{2}, Y, A, B, C\right\}, \Sigma=\{a, b, c\}$, and R^{\prime} being the following set of rules:

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X Y \\
X & \rightarrow a b b|a X b| \epsilon \\
Y & \rightarrow c \mid c Y \\
S_{0} & \rightarrow S \\
S & \rightarrow X Y \mid Y \\
X & \rightarrow a b b|a X b| a b \\
Y & \rightarrow c \mid c Y
\end{aligned}
$$

$$
\begin{aligned}
S_{0} & \rightarrow S \\
S & \rightarrow X Y|c| c Y \\
X & \rightarrow a b b|a X b| a b \\
Y & \rightarrow c \mid c Y \\
& \\
S_{0} & \rightarrow S \\
S & \rightarrow X Y|c| c Y \\
X & \rightarrow a X_{1}\left|a X_{2}\right| a b \\
X_{1} & \rightarrow b b \\
X_{2} & \rightarrow X b \\
Y & \rightarrow c \mid c Y \\
& \\
S & \rightarrow X Y|c| C Y \\
X & \rightarrow A X_{1}\left|A X_{2}\right| A B \\
X_{1} & \rightarrow B B \\
X_{2} & \rightarrow X B \\
Y & \rightarrow c \mid C Y \\
A & \rightarrow a \\
B & \rightarrow b \\
C & \rightarrow c
\end{aligned}
$$

Exercise 4.2 (Pushdown Automata)
Consider the following PDA:

(a) Show that the PDA accepts the word aaadbabacc.

Solution:

$$
\begin{aligned}
& \left(\text { aaadbabacc, } q_{0}, \epsilon\right) \rightarrow \\
\rightarrow & \left(\text { aaadbabacacc, } q_{1}, \$\right) \rightarrow \\
\rightarrow & \left(\text { aadbabacc, } q_{1}, x \$\right) \rightarrow \\
\rightarrow & \left(\text { aadbabacc, } q_{2}, x \$\right) \rightarrow \\
\rightarrow & \left(\text { adbabacc, } q_{2}, y x \$\right) \rightarrow \\
\rightarrow & \left(\text { dbabacacc, } q_{2}, y y x \$\right) \rightarrow \\
\rightarrow & \left(\text { babacacc, } q_{3}, y y x \$\right) \rightarrow \\
\rightarrow & \left(\text { abacc, } q_{4}, y y x \$\right) \rightarrow \\
\rightarrow & \left(\text { baccc, } q_{3}, y x \$\right) \rightarrow \\
\rightarrow & \left(\text { acc } q_{4}, y x \$\right) \rightarrow \\
\rightarrow & \left(c c, q_{3}, x \$\right) \rightarrow \\
\rightarrow & \left(c c, q_{5}, x \$\right) \rightarrow \\
\rightarrow & \left(c, q_{6}, x \$\right) \rightarrow \\
\rightarrow & \left(\epsilon, q_{5}, \$\right) \rightarrow \\
\rightarrow & \left(\epsilon, q_{7}, \epsilon\right) .
\end{aligned}
$$

(b) Which language L does the given PDA accept?

Solution:
$L=\left\{a^{n} a^{s} d(b a)^{s} c^{2 n} \in\{a, b, c, d\}^{*} \mid n, s \geq 0\right\}$

Exercise 4.3 (Pushdown Automata)

Create a PDA that recognizes the following context free language:

$$
L=\left\{a^{*} w c^{k} \mid w \in\{a, b\}^{*} \text { and } k=|w|_{a}(k=\text { the number of } a \text { s in } w)\right\}
$$

Solution:

Exercise 4.4 (Pushdown Automata)
Create a PDA that recognizes the following language.

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j \geq 0, k=i+j\right\}
$$

Solution:

