Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter semester 2014/2015 University of Freiburg Department of Computer Science

Exercise Sheet 9 Due: 15th January 2014

Exercise 9.1 (P)

- (a) Show that P is closed under union, complement, and concatenation.
- (b) The complexity class coP contains all languages L whose complement is in P. Formally, $coP = \{L \mid \overline{L} \in P\}$. Is P = coP?

Solution:

- (a) Union: Let L_i (i = 1, 2) be two languages in P and let M_i be a DTM that accepts L_i in polynomial time p_i where p_i . We can construct a DTM M with two tapes that works as follows: on input w copy w to the second tape and simulate M_1 on the first tape. If M_1 accepts within time p_1 , accept. Otherwise simulate M_2 on the second tape. If it accepts, accept. This can obviously be done in polynomial time: Copying the input takes linear time (running once over the input and then moving the head back) and both simulations can be done in polynomial time (because $L_1, L_2 \in P$). Obviously Maccepts a word w iff w in $L_1 \cup L_2$. Since M can be simulated on a single-tape TM with only quadratic overhead, there is an equivalent single-tape TM that accepts the same language in polynomial time.
 - **Complement**: Let $L \in P$ be a language that is accepted by a DTM M within time p where p is a polynomial. We can construct a DTM M' that simulates M on its input and accepts if M did not accept within time p. Obviously, M' accepts \overline{L} in polynomial time.
 - Concatenation: Let L_1 and L_2 be languages in P, and suppose we want to recognise their concatenation. Suppose we are given an input of length n. For each i between 1 and n-1, test whether positions 1 through i holds a string in L_1 and positions i+1to n hold a string in L_2 . If so, accept; the input is in L_1L_2 . If the test fails for all i, reject the input.

It is easy to see that such Turing machine still runs in polynomial time p. Indeed, for every pivot position i = 1, ..., n, M_1 and M_2 take respectively polynomial time $p_1(i)$ and $p_2(n-i)$ to run. Thus¹, $p(n) \leq \sum_{i=1}^n p_1(i) + p_2(n-i) \leq np_1(n) + np_2(n)$.

- (b) Yes: as usual, we show that $P \subseteq coP$ and $coP \subseteq P$.
 - $coP \subseteq P$) Let L be a language in P. Since P is closed under complement, we know that $L^{\complement} \in P$. We can conclude that $L = (L^{\complement})^{\complement} \in coP$
 - $P \subseteq coP$) Analogously, let L be a language in coP. Then L^{\complement} is in P. Since P is closed under complement, $(L^{\complement})^{\complement}$ is in P and we can conclude that $L \in P$.

Exercise 9.2 (Reduction)

Given an undirected graph $\mathcal{G} := \langle G, E \rangle$ and an integer number $0 \leq k \leq |G|$, the following NPcomplete problems have been introduced in the lectures (see 07.pdf, slides 80-82-84):

Clique : Does \mathcal{G} contain a *clique* of size at least k? That is, there exist a set $C \subseteq G$ so that $\langle u, v \rangle \in E$ for every $u, v \in C$ ($u \neq v$) and $|C| \geq k$?

¹Wlog, computational time can be supposed monotonically increasing wrt the input's length.

- **IndSet** : Does \mathcal{G} contain an *independent set* whose size is at least k? In other words, does G admit a subset $I \subseteq G$ with $|I| \ge k$ and such that there exists no edge $\langle u, v \rangle$ whenever u, v lie in I?
- **VertexCover** : Does \mathcal{G} contain a *vertex cover* of size at most k? That is, is it possible to find a set $C \subseteq G$ so that $|C| \leq k$ and for every edge $\langle u, v \rangle \in E$, $u \in C$ or $v \in C$?

Prove the following statements:

(a) Clique \leq_P IndSet

Hint: consider the complement graph.

Solution: let's consider the complement graph. By definition, given a graph $\mathcal{G} := (G, E)$, we call complement graph of \mathcal{G} the graph $\mathcal{G}^{\complement} := (G, E')$ where $E' := \{ \langle u, v \rangle \mid \langle u, v \rangle \notin E \}$. Roughly speaking, an edge in $\mathcal{G}^{\complement}$ connects two vertices if and only if those vertices are independent in \mathcal{G} . It is trivial to see that the following relation holds:

X is a clique of $\mathcal{G} \Leftrightarrow X$ is an independent set of $\mathcal{G}^{\complement}$.

Thus, to prove statement (a) we just need to provide a Turing machine M that converts \mathcal{G} into $\mathcal{G}^{\complement}$ in polynomial time with respect to the size of the graph |G|. However, such conversion can be performed at least in $O(|G|^2)$ just by checking for every vertex $u \in G$ which vertex $v \in G$ satisfies $\langle u, v \rangle \notin E$.

As a consequence there exist a function $f_{\mathbb{C}} \in O(|\langle \mathcal{G}, k \rangle|^2)$ so that $f_{\mathbb{C}}(\langle \mathcal{G}, k \rangle) = \langle \mathcal{G}^{\mathbb{C}}, k \rangle$ and $\langle \mathcal{G}, k \rangle \in \text{Clique iff } f_{\mathbb{C}}(\langle \mathcal{G}, k \rangle) \in \text{IndSet.}$ The statement is proved.

(b) IndSet \leq_P VertexCover

Hint: consider the relation between vertex covers and independent sets.

Solution: let's prove first a preliminary result. In the above hypoteses, the following statements are equivalent

X is an independent set of \mathcal{G} of size $k \Leftrightarrow G \setminus X$ is a vertex cover of \mathcal{G} of size |G| - k.

- \Rightarrow) Let X be an independent set and let $\langle u, v \rangle \in E$, then u and v cannot lie both in X. That is, either u or v belongs to $G \setminus X$.
- \Leftarrow) Let's suppose $G \setminus X$ to be a vertex cover but X not to be an independent set. Accordingly, there must be an edge $\langle u, v \rangle \in E$ so that $u, v \in X$ (and hence $u, v \notin G \setminus X$). This contradicts the definition of vertex cover.

Owing to the above result, we can define the following function $f_{-}(\langle \mathcal{G}, k \rangle) = \langle \mathcal{G}, |V| - k \rangle$. It is easy to see that such conversion can be computed in polynomial time by a Turing machine (at least $f_{-} \in O(|\langle \mathcal{G}, k \rangle|)$). Thus, we can conclude the proof just by observing that the above result implies $\langle \mathcal{G}, k \rangle \in \text{IndSet}$ iff $f_{-}(\langle \mathcal{G}, k \rangle) \in \text{VertexCover}$.