Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi
University of Freiburg
F. Boniardi

Winter semester 2014/2015

Exercise Sheet 10
 Due: 22 ${ }^{\text {nd }}$ January 2015

Exercise 10.1 (Propositional Logic)
Determine the validity or invalidity of the following argument:
"If Alice is elected class-president, then either Betty is elected vice-president, or Carol is elected treasurer. Betty is elected vice-president. Therefore if Alice is elected classpresident, then Carol is not elected treasurer."
Please explain every formal step.
Solution: We use the following symbols for each sentence.
A - Alice is elected class-president
B - Betty is elected vice - president
C - Carol is elected treasurer
The translation for each line of the argument is as follows

$$
\begin{aligned}
& A \rightarrow((B \wedge \neg C) \vee(\neg B \wedge C)) \text { If Alice is elected class-president, then either Betty is elected vice- } \\
& B \text { president, or Carol is elected treasurer. } \\
& A \rightarrow \neg C \text { Betty is elected vice-president } \\
& \text { if Alice is elected class-president, then Carol is not elected treasurer. }
\end{aligned}
$$

The sentence corresponding to the argument is

$$
\phi:=((A \rightarrow((B \wedge \neg C) \vee(\neg B \wedge C))) \wedge B) \rightarrow(A \rightarrow \neg C)
$$

In order to see if ϕ is valid or not, we can try to find an intepretation I for A, B, C that falsifies ϕ. Looking at the truth table of ϕ we have:

A	B	C	ϕ
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}

The above statement shows that every interpretation is a model so the argument ϕ is valid. ${ }^{1}$

[^0]Exercise 10.2 (Propositional Logic)
(a) Consider the following logical formula:

$$
\phi=(A \leftrightarrow \neg B) \wedge \neg(C \vee B \rightarrow A)
$$

Show that $\phi \equiv \neg A \wedge B$ by using the equivalences from the lectures (see slide 17, 08.pdf) and the equivalences $\psi \wedge \neg \psi \equiv \perp$ and $\psi \vee \perp \equiv \psi \equiv \perp \vee \psi$. Apply in each step only one of the equivalences with the exception that you may implicitly use associativity.
Solution:

$$
\begin{aligned}
\phi & \equiv(A \leftrightarrow \neg B) \wedge \neg(C \vee B \rightarrow A) \\
& \equiv(A \leftrightarrow \neg B) \wedge \neg(\neg(C \vee B) \vee A) \\
& \equiv(A \leftrightarrow \neg B) \wedge(\neg \neg(C \vee B) \wedge \neg A) \\
& \equiv(A \leftrightarrow \neg B) \wedge(C \vee B) \wedge \neg A \\
& \equiv(A \rightarrow \neg B) \wedge(\neg B \rightarrow A) \wedge(C \vee B) \wedge \neg A \\
& \equiv(\neg A \vee \neg B) \wedge(\neg B \rightarrow A) \wedge(C \vee B) \wedge \neg A \\
& \equiv(\neg A \vee \neg B) \wedge(\neg \neg B \vee A) \wedge(C \vee B) \wedge \neg A \\
& \equiv(\neg A \vee \neg B) \wedge(B \vee A) \wedge(C \vee B) \wedge \neg A \\
& \equiv \neg A \wedge(\neg A \vee \neg B) \wedge(B \vee A) \wedge(C \vee B) \\
& \equiv \neg A \wedge(B \vee A) \wedge(C \vee B) \\
& \equiv((\neg A \wedge B) \vee(\neg A \wedge A)) \wedge(C \vee B) \\
& \equiv((\neg A \wedge B) \vee \perp) \wedge(C \vee B) \\
& \equiv \neg A \wedge B \wedge(C \vee B) \\
& \equiv \neg A \wedge B \wedge(B \vee C) \\
& \equiv \neg A \wedge B
\end{aligned}
$$

(definition)

$$
(\rightarrow \text { elimination })
$$

(De Morgan)
(double negation)

$$
(\leftrightarrow \text { elimination) }
$$

$$
\equiv(\neg A \vee \neg B) \wedge(\neg B \rightarrow A) \wedge(C \vee B) \wedge \neg A \quad(\rightarrow \text { elimination })
$$

$$
\equiv(\neg A \vee \neg B) \wedge(\neg \neg B \vee A) \wedge(C \vee B) \wedge \neg A \quad(\rightarrow \text { elimination })
$$

$$
\equiv(\neg A \vee \neg B) \wedge(B \vee A) \wedge(C \vee B) \wedge \neg A \quad \text { (double negation) }
$$ (commutativity)

(absorption)
(distributivity)

$$
(\phi \wedge \neg \phi \equiv \perp)
$$

$$
(\phi \vee \perp \equiv \phi)
$$

(commutativity)
(absorption)
(b) Consider a vocabulary with only four atomic propositions A, B, C, D. How many models are there for the following formulae? Explain.
i) $(A \wedge B) \vee(B \wedge C)$
ii) $(A \leftrightarrow B) \wedge(B \leftrightarrow C)$

Solution: These can be computed by counting the rows in a truth table that come out true. Remember to count the propositions that are not mentioned; if a sentence mentions only A and B, then we multiply the number of models for $\{A, B\}$ by 2^{2} to account for C, D. Hence,
i) Considering that proposition D is not mentioned, there are $3 \cdot 2=6$ models that satisfy this formula.

A	B	\mathbf{C}	$A \wedge B$	$B \wedge C$	$(A \wedge B) \vee(B \wedge C)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

ii) Similarly, there are $2 \cdot 2$ models that satisfy this formula.

A	B	C	$(A \leftrightarrow B) \wedge(B \leftrightarrow C)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Exercise 10.3 (Propositional Logic)
Show that the following formula is valid:

$$
(A \rightarrow B) \leftrightarrow(\neg B \rightarrow \neg A) .
$$

The implication $\neg B \rightarrow \neg A$ is sometimes called contrapositive or counternominal implication of $A \rightarrow B$.

Solution:

To show the validity of the above formula, we can apply the usual equivalences. We get the following identities:

$$
\begin{aligned}
& (A \rightarrow B) \leftrightarrow(\neg B \rightarrow \neg A) \equiv \\
\equiv & (\neg A \vee B) \leftrightarrow(\neg \neg B \vee \neg A) \equiv \\
\equiv & (\neg A \vee B) \leftrightarrow(B \vee \neg A) \equiv \\
\equiv & (\neg A \vee B) \leftrightarrow(\neg A \vee B) \equiv \\
\equiv & (\neg(\neg A \vee B) \vee(\neg A \vee B)) \wedge(\neg(\neg A \vee B) \vee(\neg A \vee B)) \equiv \\
\equiv & \top \wedge \top \equiv \top
\end{aligned}
$$

Equivalently, we could have used a truth table, obtaining

A	\mathbf{B}	$(A \rightarrow B) \leftrightarrow(\neg B \rightarrow \neg A)$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

[^0]: ${ }^{1}$ In this exercise we have used the "exclusive or" (called XOR operator) that is often denoted with $\oplus: A \oplus B=$ $(A \wedge \neg B) \vee(\neg A \wedge B)$.

