Theoretical Computer Science (Bridging Course)

Dr. G. D. Tipaldi F. Boniardi Winter Semester 2014/2015 University of Freiburg Department of Computer Science

Revision Sheet

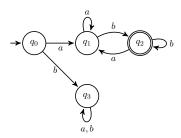
Question 1 (Finite Automata, 8 + 6 points)

- (a) Give a regular expression for each of the following languages:
 - (i) all strings over $\{0,1\}$ that are at least three symbols long and have a 0 at their resp. 3rd positions
 - (ii) all strings over $\{0,1\}$ that have odd length, if starting with a 0, and even length otherwise
 - (iii) all strings over $\{a, b\}$ that contain the substrings aa or bab
 - (iv) all strings over $\{a,b\}$ that do not contain the substring ba

Solution: Setting $\Sigma := \{0,1\}$ or $\Sigma := \{a,b\}$ according to the context, some possible solutions are

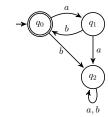
- (i) $\Sigma\Sigma0\Sigma^*$.
- (ii) $(0 \cup 1\Sigma)(\Sigma\Sigma)^* \cup \epsilon$.
- (iii) $\Sigma^*(aa \cup bab)\Sigma^*$.
- (iv) If a string on $\{a,b\}$ does not contain ba as a substring, it means that the sequence of symbols is not decreasing (wrt the lexicographic order). Thus a solution is a^*b^* .
- (b) Draw a DFA equivalent to each of the following regular expressions:
 - $(i) \ a(a \cup b)^*b.$

Solution: a possible DFA is:



 $(ii) (ab)^*$

Solution: below an example of DFA that accepts such language



Question 2 (Regular languages, 14 points)

Let $\Sigma = \{a, b\}$. Use the pumping lemma to prove that:

$$L = \{a^n b^{2n} a^{3n} \mid n \ge 0\}$$

is not regular.

Any other proof techniques will **not** receive any points.

Solution: let's assume that L is a regular language. According to the Pumping Lemma, there must exist an integer p > 0 so that for any word $w \in L$ with $|w| \ge p$, there exists a decomposition of w in substrings xyz (i.e. w = xyz) such that the following properties are satisfied:

- $|xy| \leq p$.
- $y \neq \epsilon$
- $xy^kz \in L$ for any $k \in \mathbb{N}_0$.

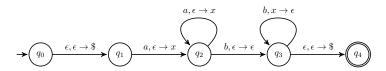
It is apparent that if we select $w=a^pb^{2p}a^{3p}\in L$, then $|w|\geq p$. Furthermore, if such x,y,z exist, then $xy^0z=a^{p-|y|}b^{2p}a^{3p}\notin L$. This contradicts the Pumping Lemma.

Question 3 (Context-free languages, 7+7 points)

(a) Give the state diagram of a PDA recognizing the language

$$A = \{a^i b^j \mid i > 0 \text{ and } j = i + 1\}.$$

Solution: it is easy to see that the following PDA accept the language A:



(b) Let $G = \langle \{S, X, Y, Z\}, \{a, b, c, d\}, R, S \rangle$ be the CFG with rules:

$$\begin{split} S &\to XYZ \\ X &\to Xa \mid b \mid \varepsilon \\ Y &\to b \mid c \\ Z &\to cd \end{split}$$

Specify a CFG G_0 in Chomsky Normal Form such that $L(G_0) = L(G)$.

Solution: we apply the standard procedure to convert CFG in Chomsky Normal Form. The procedure is listed below:

Remove the ϵ -rules:

$$S \to XYZ \mid YZ$$

$$X \to Xa \mid b \mid a$$

$$Y \to b \mid c$$

$$Z \to cd$$

Remove $[X \to Xa]$ by introducing the auxiliary variable A and the rule $[A \to a]$:

$$S \rightarrow XYZ \mid YZ$$

$$X \rightarrow XA \mid b \mid a$$

$$Y \rightarrow b \mid c$$

$$A \rightarrow a$$

$$Z \rightarrow cd$$

Add auxiliary variables U, C, D and related rules to complete the CNF.

$$S \rightarrow XU \mid YZ$$

$$U \rightarrow YZ$$

$$X \rightarrow XA \mid b \mid a$$

$$Z \rightarrow CD$$

$$A \rightarrow a$$

$$C \rightarrow c$$

$$D \rightarrow d$$

$$Y \rightarrow b \mid c$$

Question 4 (NP-completeness, 7 + 7 points)

Let $\mathcal{G} := (V, E)$ be an undirected graph. A vertex cover of \mathcal{G} is a vertex set $C \subseteq V$ such that for all $\langle u, v \rangle \in E$, $u \in C$ or $v \in C$.

Let S := (S, C) be a subset collection, i.e., S is a finite set and $C = \{C_1, \ldots, C_n\}$ where $C_i \subseteq S$ for all $i \in \{1, \ldots, n\}$. A hitting set of S is a subset $H \subseteq S$ such that $H \cap C_i \neq \emptyset$ for all $i \in \{1, \ldots, n\}$.

The VertexCover and HittingSet decision problems are defined as:

VertexCover = $\{\langle \mathcal{G}, n \rangle \mid \mathcal{G} \text{ is a graph which has a vertex cover of size at most } n \in \mathbb{N}_1\}$ **HittingSet** = $\{\langle \mathcal{S}, m \rangle \mid \mathcal{S} \text{ is a subset collection with a hitting set of size at most } m \in \mathbb{N}_1\}$

- (a) Prove that $\mathbf{VertexCover} \leq_p \mathbf{HittingSet}$.
- (b) Prove that **HittingSet** is NP-complete. (You may use your result from part (a) and that it is known that VertexCover is NP-complete.)

Solution:

(a) Our goal is to prove that there exists a function f which convert the input of **VertexCover** into the input of **HittingSet** and that can be computed in polynomial time by a Turing Machine. Formally, we need to provide a function f so that $\langle \mathcal{G}, n \rangle \in \mathbf{VertexCover}$ iff $f(\langle \mathcal{G}, n \rangle) \in \mathbf{HittingSet}$ and $f \in O(|\langle \mathcal{G}, n \rangle|^k)$ for some integer k > 0.

To do so, let $\mathcal{E} := \{\{u, v\} | \langle u, v \rangle \in E\}$. Then it easy to see that

C is a vertex cover of \mathcal{G} of size at most $n \Leftrightarrow C$ is an hitting set of (V, \mathcal{E}) of size at most n

Let now f be the function defined so that $f(\langle \mathcal{G}, n \rangle) = \langle \mathcal{E}, n \rangle$, it is easy to see from the observation above that $\langle \mathcal{G}, n \rangle \in \mathbf{VertexCover}$ iff $f(\langle \mathcal{G}, n \rangle) \in \mathbf{HittingSet}$ and $f \in O(|\langle \mathcal{G}, n \rangle|^2)$.

- (b) We have to show that
 - HittingSet is NP-hard: that is, $X \leq_{p}$ HittingSet $\forall X \in NP$.

This can easily proven just by observing that **VertexCover** is NP-complete, that is, $X \leq_{p} \mathbf{VertexCover}$ for all $X \in \mathrm{NP}$. Thus, $X \leq_{p} \mathbf{VertexCover} \leq_{p} \mathbf{HittingSet} \ \forall X \in \mathrm{NP}$.

HittingSet \in NP: We can apply guess-and-check to solve **HittingSet**. Indeed, we can test whether a subset H is an hitting set of size at most m for S by testing the not-emptiness of the intersection $H \cap C_i$ for every set $C_i \in C$. This can surely be done in $O(|H|\sum_{i=1}^{|C|}|C_i|)$. Observing that $|C_i| \leq |S|$, $|C| \leq m$ and $|H| \leq |S|$, then it easy to see that such test can be performed in $O(m|S|^2)$ computations. That is, a Turing machine M can run such test in $O(|\langle S, m \rangle|^3)$. Thus we can create a NTM M' that on input $\langle S, m \rangle$ choose non-deterministically a set $H \subseteq S$ and test whether H is an hitting set for $\langle S, m \rangle$. M' solves **HittingSet** in polynomial time.

Question 5 (Decidability, 4 + 10 points)

Consider the problem of testing whether a given single-tape Turing machine ever writes a blank symbol over a non-blank symbol during the course of its computation, for any input string.

- (a) Formulate this problem as a language.
- (b) Show that the problem is undecidable.

Solution:

(a) The language can be described as

 $L = \{ \langle M, w \rangle \mid M \text{ is a TM that writes a blank symbol over a non-blank one ...} \}.$

(b) To show that such language is undecidable, we can argument as follows. Let suppose that L is decidable and let D be a decider for L. We can define a Turing Machine \mathcal{D} as follows:

```
\mathcal{D} = "On input \langle M, w \rangle
```

- 1. Create a Turing Machine M' so that:
 - 1.a Whenever M writes a blank symbol, it writes a non-blank symbol γ .
 - 1.b Apply the transition defined by blank symbols whenever γ is read.
 - 1.c Before accepting, we write γ and then we overwrite a blank.
- 2. If $D(\langle M', w \rangle)$ accepts, accept. reject otherwise."

It is easy to see that M' never writes a blank symbol unless M' accepts the input w. That is, \mathcal{D} is a decider for A_{TM} which is clearly a contradiction.

Question 6 (Propositional Logic, 5 + 9 points)

(a) Resolution is not a complete proof method. However, the *contradiction theorem* can be used to obtain a sound and complete method based on resolution for answering queries of the form "Does KB $\models \varphi$?".

Describe how this is done in general, i.e., to which set of clauses the resolution method is applied, and which outcome of the resolution method means that $KB \models \varphi$.

You may assume that KB is given as a set of clauses and φ as a conjunction of literals.

(b) Use the method described in part (a) to prove KB $\models P \land R$ for

$$KB = \{ P \vee \neg Q, \quad P \vee Q \vee \neg R, \quad P \vee R, \quad Q \vee S, \quad R, \quad \neg R \vee S \}.$$

Solution:

- (a) Discussed in class.
- (b) Using contradiction theorem we have KB $\models P \lor R$ if and only if KB' := KB $\cup \{\neg(P \land R)\} \models \bot$. We first convert KB' into a clause set:

Formula (and equivalences)	Clauses
$P \vee \neg Q$	$\{P, \neg Q\}$
$P \vee Q \vee \neg R$	$\{P,Q,\neg R\}$
$P \vee R$	$\{P,R\}$
$Q \lor S$	$\{Q,S\}$
\overline{R}	$\{R\}$
$\neg R \lor S$	$\{\neg R, S\}$
$\neg (P \land R) \equiv \neg P \lor \neg R$	$\{\neg P, \neg R\}$

That is, the clause set is

$$\Delta := \left\{ \{P, \neg Q\}, \{P, Q, \neg R\}, \{P, R\}, \{Q, S\}, \{R\}, \{\neg R, S\}, \{\neg P, \neg R\} \right\}.$$

The following derivation turns into a contradiction:

$C_1 = \{P, \neg Q\}$	from Δ
$C_2 = \{P, Q, \neg R\}$	from Δ
$C_3 = \{P, \neg R\}$	from C_1 and C_2
$C_4 = \{R\}$	from Δ
$C_5 = \{P\}$	from C_3 and C_4
$C_6 = \{\neg P, \neg R\}$	from Δ
$C_7 = \{\neg R\}$	from C_6 and C_5
$C_8 = \square$	from C_4 and C_7

Question 7 (Propositional logic, 9 + 5 points)

(a) Which of the following formulae are *satisfiable*? Which ones are *valid*? Which ones are *unsatisfiable*? For formulas belonging to several of these categories, please list *all* of them. For all *satisfiable* cases, also provide a satisfying truth assignment. For the questions about validity and unsatisfiability, you do *not* need to justify your answers.

$$(i) (A \lor \neg B) \to (A \land C)$$

$$(ii) \ (A \leftrightarrow B) \land (B \leftrightarrow \neg A)$$

(iii)
$$(A \wedge B) \vee (\neg A \wedge \neg B)$$

$$(iv) \ (A \leftrightarrow B) \land (B \rightarrow \neg A)$$

Solution:

(i) Satisfiable $(A \leftarrow \mathbf{T}, B \leftarrow \mathbf{T}, C \leftarrow \mathbf{T})$.

- (ii) Unsatisfiable.
- (iii) Satisfiable $(A \leftarrow \mathbf{T}, B \leftarrow \mathbf{T})$.
- (iv) Satisfiable $(A \leftarrow \mathbf{F}, B \leftarrow \mathbf{F})$.
- (b) Prove that

$$(A \land B) \to C \equiv A \to (B \to C)$$

by providing a sequence of logical equivalences that transforms the left-hand side into the right-hand side.

Solution: We can prove the equivalence as follows:

$$(A \land B) \to B \equiv A \to (B \to C)$$

$$\neg (A \land B) \lor C \equiv \neg A \lor (B \to C)$$

$$\neg A \lor \neg B \lor C \equiv \neg A \lor \neg B \lor C$$

Question 8 (Example of multiple choice question)

In which of the following cases is the logical formula to the left a reasonable formalization of the natural-language sentence to the right?

- $\Box \forall x \forall y ((LivesIn(x,y) \land \neg EatsUp(x)) \rightarrow BadWeatherIn(y))$ "Whenever someone who lives in some place does not eat up, the weather in that place will be bad."
- $\square \forall x \forall y (Friend(x, y) \land Friend(y, x))$ "Whenever A is a friend of B, B is a friend of A."
- $\square \ \forall x \forall y (\textit{FatherOf}(x, \text{me}) \land \textit{DaughterOf}(y, x) \land \textit{Female}(\text{me})) \rightarrow (y = \text{me})$ "If my father has a daughter and I am female, then that daughter is me."
- $\square \exists x \forall y Father(x, y)$ "Everybody has at least one father."
- □ DaughterOf(me, Friend) "I am the daughter of my friend."

Solution: 1.