
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Motivation

Course Content

 Theoretical computer science

 Automata theory

 Formal languages, grammars

 Turing machines, decidability

 Computational complexity

 Introduction to logic

 Propositional logic

 First order logic

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

 What does it mean “to compute”?

 What can be computed?

 What can be computed efficiently?

Purpose of the Course

What are the fundamental capabilities
and limitations of computers?

 What does it mean “to compute”?

 Automata theory

 What can be computed?

 Computability/Decidability theory

 What can be computed efficiently?

 Computational complexity

The Meaning of “Compute”

 Various mathematical models

 Turing machines 1930s

 Finite state automata 1940s

 Formal grammars 1950s

 Practical aspects

 Computer architectures 1970s

 Programming languages 1970s

 Compilers 1970s

Is my Function Computable?

 Write an algorithm to compute it

 Can it compute every instance?

 Will it always give you an answer?

 Then you are done.

 If not, there are two choices

 There is an algorithm but you don’t know

 There exists no algorithm -> Unsolvable

 Formally prove computability is hard

Is my Function Computable?

 Many “known” problems are solvable

 Sorting

 Knapsack

 Other problems are not solvable

 Halting problem

 Gödel incompleteness theorem

 Don’t try to solve unsolvable problems

Can I Compute it Efficiently?

 Some problems are “easy”

 Can we formally define it?

 Complexity theory comes to help

 Complexity classes

 Tools for checking class membership

 Important to know how hard it is

Can I Compute it Efficiently?

 Feasible problems

 Sorting, linear programming, LZW

 Time is polynomial in input

 Considered-unfeasible problems

 Scheduling, Knapsack, TSP

 Big open question: P=NP?

 Unfeasible problems

 Quantified boolean formula

 Time is exponential in input

