Theoretical Computer Science (Bridging Course)

Motivation

Gian Diego Tipaldi

Course Content

- Theoretical computer science
 - Automata theory
 - Formal languages, grammars
 - Turing machines, decidability
 - Computational complexity
- Introduction to logic
 - Propositional logic
 - First order logic

Purpose of the Course

What are the fundamental capabilities and limitations of computers?

Purpose of the Course

What are the fundamental capabilities and limitations of computers?

- What does it mean "to compute"?
- What can be computed?
- What can be computed efficiently?

Purpose of the Course

What are the fundamental capabilities and limitations of computers?

- What does it mean "to compute"?
 - Automata theory
- What can be computed?
 - Computability/Decidability theory
- What can be computed efficiently?
 - Computational complexity

The Meaning of "Compute"

- Various mathematical models
 - Turing machines 1930s
 - Finite state automata
 - Formal grammars 1950s
- Practical aspects
 - Computer architectures 1970s
 - Programming languages 1970s
 - Compilers

1970s

1940s

Is my Function Computable?

- Write an algorithm to compute it
 - Can it compute every instance?
 - Will it always give you an answer?
 - Then you are done.
- If not, there are two choices
 - There is an algorithm but you don't know
 - There exists no algorithm -> Unsolvable
- Formally prove computability is hard

Is my Function Computable?

- Many "known" problems are solvable
 - Sorting
 - Knapsack
- Other problems are not solvable
 - Halting problem
 - Gödel incompleteness theorem
- Don't try to solve unsolvable problems

Can I Compute it Efficiently?

- Some problems are "easy"
- Can we formally define it?
- Complexity theory comes to help
 - Complexity classes
 - Tools for checking class membership
- Important to know how hard it is

Can I Compute it Efficiently?

- Feasible problems
 - Sorting, linear programming, LZW
 - Time is polynomial in input
- Considered-unfeasible problems
 - Scheduling, Knapsack, TSP
 - Big open question: P=NP?
- Unfeasible problems
 - Quantified boolean formula
 - Time is exponential in input