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 Probabilistic counterparts exists 

 Markov chains 

 Bayesian networks 
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Finite Automata 

 

 

 

 

 States:  

 Alphabet:  

 Transition function: See edges 

 Start state:  

 Final states: 

 



Finite Automata 

 

 

 

 

Which kind of input is accepted? 

 “aaaabbbbaaaa” ? 

 “000000” ? 

 An empty string? 

 “1000111” ? 

 



Finite Automata 

 

 

 

 

Which language is accepted? 

 “aaaabbbbaaaa” ? 

 “000000” ? 

 An empty string? 

 “1000111” ? 

 



Finite Automata 

 

 

 

 

Which language is accepted? 

 

 

 “M recognizes A” 

 “A is the language L(M)” 

 



Finite Automata – Example  

 Which language recognizes M? 
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Finite Automata – Example  

 And in this case? 

q2 q1 
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Finite Automata – Example  

 What about this one? 



Finite Automata – Example  

 



Finite Automata – Example  

  Sums all numerical 
symbols that reads, 
modulo 3. 

 Resets the count, 
every time it 
receives <RESET>. 

 Accepts, if the sum 
is a multiple of 3. 

 



Definition of Computation 

 




Designing Finite Automata 

We want to accept binary strings with 
an odd number of 1s 
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Designing Finite Automata 

We want to accept binary strings with 
an odd number of 1s 

1. Design states 

2. Design transitions 

3. Design start state and accept states 

q2 q1 

0 0 1 

1 



Designing Finite Automata 

We want to accept binary strings 
containing 001 as substring 
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Designing Finite Automata 

We want to accept binary strings 
containing 001 as substring 

1. No symbols of the string 
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Designing Finite Automata 

We want to accept binary strings 
containing 001 as substring 

1. No symbols of the string 

2. We have a 0 

3. We have a 00 

4. We have a 001 

q0 q 

1 0 
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0 0,1 

1 0 
q001 



Regular Operations 

Let A and B be languages, we have: 

 Union: 

 Concatenation: 

 Star: 

 

 Example 

   

   

   



Closure of Regular Languages 

 




Proof by Construction 
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Example 

 L(M1) = {w|w contains a 1} 

 L(M2) = {w|w contains at least two 0s} 
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Example 
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Example 

 L(M1) = {w|w contains a 1} 

 L(M2) = {w|w contains at least two 0s} 
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Example 

 L(M1) = {w|w contains a 1} 

 L(M2) = {w|w contains at least two 0s} 
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Closure of Regular Languages 
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Non deterministic  
finite automata 



Nondeterministic Automata 

 Deterministic (DFA) 

 One successor state 

 𝜀 transitions not allowed 

 Nondeterministic (NFA) 

 Several successor states possible 

 𝜀 transitions possible 

 

q2 q1 q3 q4 

0,1 
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1 0,ε 
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Nondeterministic Computation 

 



Example Run 

 
q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

0 

0 

1 

1 

0 
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q2 q1 q3 q4 

0,1 
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1 0,ε 1 

Input: w = 010110 

NFA 𝑁1 



Which language is accepted? 

 



Nondeterministic Automata 

 
   



Nondeterministic Automata 

 
   



Definition of computation 

 




A NFA has an equivalent DFA 

NFA recognizing 
language 𝐴 

DFA recognizing 
language 𝐴 



Equivalence NFA and DFA 

Theorem 1.39: 

Every nondeterministic finite automaton 
has an equivalent deterministic finite 
automaton. 

 

Corollary 1.40: 

A language is regular if and only if some 
nondeterministic finite automaton 
recognizes it. 



Proof: Theorem 1.39 

 




Proof: Theorem 1.39  

 




Proof: Theorem 1.39 

 




Proof: Theorem 1.39 (ctd.) 

 




Example 

 Consider the following NFA 

 

 

 

 

 
 

 

 What is the corresponding DFA? 

 



Example 

 Resulting DFA for the example before 



Example 

 Simplified DFA for the example before 



Closure of Regular Operations 

 




Closure of Regular Operations 

 Regular languages are closed under 
the union operation 



Proof 

 




Closure of Regular Operations 

 Regular languages are closed under 
the concatenation operation 



Proof 

 




Closure of Regular Operations 

 Regular languages are closed under 
the star operation 



Proof 

 




Regular Expressions 

 




Regular Expressions – Examples  

 




Regular Expressions – Examples  

 




Applications of Regular 
Expressions 

 Design of compilers 

 Search for strings (awk, grep, …) 

 Programming languages 

 Bioinformatics (repetitive patterns) 



Equivalence of RE and NFA 

 

Theorem 1.54 (page 66): 

A language is regular if and only if some 
regular expression describes it. 

 

 

 



Equivalence of RE and NFA 

 

Theorem 1.54 (page 66): 

A language is regular if and only if some 
regular expression describes it. 

 

Two directions to consider 

RE  <-> NFA 

 

 



Equivalence of RE and NFA 

 

Lemma 1.55 (page 67):  

If a language is described by some 
regular expression, then it is regular. 

 

Lemma 1.60 (page 69): 

If a language is regular, then it can be 
described by some regular expression. 

 



Proof RE -> NFA 

 




Proof RE -> NFA: Case 1 

 


a 



Proof RE -> NFA: Cases 2 & 3 

 




Proof RE -> NFA: Case 4, 5 & 6 

 




Example 

Let consider the expression (ab U a)* 

 

 Convert the expression into a NFA 

 Start from the smallest subexpression 

 Include the other subexpressions 

 

 Note: The states might be redundant! 



Example: (ab U a)* 

 a 

 b 

 ab 

 

 ab U a 
 

 

 (ab U a)* 
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Exercise: (ab U a)*  

 Let’s do it together! 



Exercise: (a U b)*aba 

 

a 

b 

ε 

ε 

ε 

a b ε a ε a b ε a ε ε 
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Proof NFA -> RE 

Lemma 1.60 (page 69):  

If a language is regular, then it can be 
described by a regular expression. 

 

Two steps: 

 Convert DFA into GNFA 

 Convert GNFA into regular expression 

 



Generalized NFA 

 Labels are regular expressions 

 States connected in both directions 

 Start state only exit transitions 

 Accept state only incoming transitions 

 Only one accept state 



Generalized NFA 

 

qstart 

qaccept 

b 

ab 

Ø 

b* 

ab* 

ab∪ba a* 
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Generalized NFA 

 




Generalized NFA 

 




Proof DFA -> GNFA 

 Add a new start state 

 Connect it with 𝜀 transitions 

 Add a new accept state 

 Connect it with 𝜀 transitions 

 Replace multiple labels with unions 

 Add transitions with ∅ when not present 
in the original DFA  



Proof DFA -> GNFA 

 DFA  GNFA 



Convert GNFA into RE 

 

3 state DFA 5 state GNFA 4 state GNFA 

2 state GNFA 3 state GNFA 
Regular 

Expression 



Convert GNFA into RE 

 




Ripping of States 

Replace one state with the 
corresponding regular expression 

q2 q1 

q2 

qrip 

q1 

R4 

R1 

R2 

R3 

(R1)(R2)* (R3) ∪ R4 



Example: From DFA to GNFA 

 



Example: Rip State 2 

 



Example: Rip State 1 

 



Another Example 

 

1 2 
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Rip 1: Rip 2: 

GNFA: DFA: 

s 

3 

a 
a(aa ∪b)* 

a(aa ∪b)*ab ∪b (ba ∪a) (aa ∪b)* ∪ε 

(ba ∪a) (aa ∪b)*ab ∪ bb 

s a 

Rip 3: 
(a(aa ∪b)*ab ∪b)((ba ∪a) (aa ∪b)*ab ∪ bb)*((ba ∪a) (aa ∪b)* ∪ε) ∪a(aa ∪b)* 



Equivalence Proof 
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Equivalence Proof 

 


q2 q1 

q2 

qrip 

q1 

R4 

R1 

R2 

R3 

(R1)(R2)* (R3) ∪ R4 



Nonregular Languages 

 Finite automata have finite memory 

 Are the following language regular? 

 

 

 

 

 How can we prove it mathematically? 

 

{0 1 | 0}

{ |  h a s  a n  e q u a l n u m b e r  o f  0 s  a n d  1 s }

{ | h a s  a n  e q u a l n u m b e r  o f  o c c u re n c e s  o f  0 1  a n d  1 0 }

n n
B n

C w w

D w w

 







The Pumping Lemma 

 




Proof Idea 

 Let M be a DFA recognizing A 

 Let p be the numbers of states in M 

 Show that s can be broken into xyz 

 Prove the conditions holds 
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Proof Idea 

 Let M be a DFA recognizing A 

 Let p be the numbers of states in M 

 Show that s can be broken into xyz 

 Prove the conditions holds 

 



Proof of the Pumping Lemma 

 




Use of the Pumping Lemma 

 




Nonregular Languages 
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Nonregular Languages 

 




Example Exam Question 

 




Summary 

 Deterministic finite automata 

 Regular languages 

 Nondeterministic finite automata 

 Closure operations 

 Regular expressions 

 Nonregular languages 

 The pumping lemma 


