
Theoretical Computer 
Science (Bridging Course)  

Gian Diego Tipaldi  

Regular Languages  



Topics Covered  

ÁRegular languages  

ÁDeterministic finite automata  

ÁNondeterministic finite automata  

ÁClosure  

ÁRegular expressions  

ÁNon - regular languages  

ÁThe pumping lemma  



Finite Automata  

ÁSupermarket door control  



Finite Automata  

ÁSupermarket door control  

Front  
Pad 

Rear  
Pad 



Finite Automata  

ÁSupermarket door control  

Open  Closed  

Rear  
Both  

Neither  

Rear  
Both  
Front  

Front  

Neither  



Finite Automata  

ÁSupermarket door control  

Neither  Front  Rear  Both  

Closed  Closed  Open  Closed  Closed  

Open  Closed  Open  Open  Open  



Finite Automata  
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ÁProbabilistic counterparts exists  

ÁMarkov chains  

ÁBayesian networks  

 

Neither  Front  Rear  Both  

Closed  Closed  Open  Closed  Closed  

Open  Closed  Open  Open  Open  



Finite Automata  

ÁSupermarket door control  

 

 

 

 

ÁProbabilistic counterparts exists  

ÁMarkov chains  

ÁBayesian networks  

 

Neither  Front  Rear  Both  

Closed  Closed  Open  Closed  Closed  

Open  Closed  Open  Open  Open  



Finite Automata  



Finite Automata  

 

 

 

 

ÁStates:  

ÁAlphabet:  

ÁTransition function: See edges  

ÁStart state:  

ÁFinal states:  
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Which kind of input is accepted?  

Áñaaaabbbbaaaa ò ? 

Áñ000000ò ? 

ÁAn empty string?  

Áñ1000111ò ? 
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Which language  is accepted?  

Áñaaaabbbbaaaa ò ? 

Áñ000000ò ? 

ÁAn empty string?  

Áñ1000111ò ? 
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Which language  is accepted?  

 

 

ÁñM recognizes Aò 

ÁñA is the language L(M)ò 

 



Finite Automata ï Example  

ÁWhich language recognizes M?  
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Finite Automata ï Example  

ÁAnd in this case?  

q2 q1 
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Finite Automata ï Example  

ÁWhat about this one?  



Finite Automata ï Example  

 



Finite Automata ï Example  

 ÁSums all numerical 
symbols that reads , 
modulo 3.  

ÁResets the count, 
every time it 
receives <RESET>.  

ÁAccepts , if the sum 
is a multiple of 3.  

 



Definition of Computation  

 
-



Designing Finite Automata  

We want to accept binary strings with 
an odd number of 1s 



Designing Finite Automata  

We want to accept binary strings with 
an odd number of 1s  

1. Design states  

q2 q1 



Designing Finite Automata  

We want to accept binary strings with 
an odd number of 1s  

1. Design states  

2. Design transitions  

q2 q1 

0 0 1 

1 



Designing Finite Automata  

We want to accept binary strings with 
an odd number of 1s  

1. Design states  

2. Design transitions  

3. Design start state and accept states  

q2 q1 

0 0 1 

1 



Designing Finite Automata  

We want to accept binary strings 
containing 001 as substring  
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Designing Finite Automata  

We want to accept binary strings 
containing 001 as substring  

1. No symbols of the string  

2. We have a 0  

3. We have a 00  

4. We have a 001  

q0 q  

1 0 

1 

q00  

0 0,1  

1 0 
q001  



Regular Operations  

Let A and B be languages, we have:  

ÁUnion:  

ÁConcatenation:  

ÁStar:  

 

ÁExample  

Á  

Á  

Á  



Closure of Regular Languages  

 
Á



Proof by Construction  
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Example  

ÁL(M1) = { w|w  contains a 1}  

ÁL(M2) = { w|w  contains at least two 0s}  

q1 q2 

0 0,1  

1 
p2 p1 p3 

1 0,1  

0 0 

1 



Example  

ÁL(M1) = { w|w  contains a 1}  

ÁL(M2) = { w|w  contains at least two 0s}  

q1 q2 

0 0,1  

1 
p2 p1 p3 

1 0,1  

0 0 

1 

q1
p1  

q1
p2  

q1
p3  

q2
p1  

q2
p2  

q2
p3  



Example  

ÁL(M1) = { w|w  contains a 1}  

ÁL(M2) = { w|w  contains at least two 0s}  

q1 q2 

0 0,1  

1 
p2 p1 p3 

1 0,1  

0 0 

1 

0 q1
p1  

q1
p2  

q1
p3  

q2
p1  

q2
p2  

q2
p3  

0 

1 1 1 

0 

0,1  
0 0 

1 1 



Example  
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Closure of Regular Languages  
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Non deterministic  
finite automata  



Nondeterministic Automata  

ÁDeterministic (DFA)  

ÁOne successor state  

Á‐ transitions not  allowed  

ÁNondeterministic (NFA)  

ÁSeveral  successor states possible  

Á‐ transitions possible  

 

q2 q1 q3 q4 

0,1  
0,1  

1 0,Ů 
1 



Nondeterministic Computation  

 



Example Run  

 
q1 

q1 

q3 q2 q1 

q3 q1 

q2 q1 q3 q4 

q4 

q4 

q2 q1 q3 

q3 q1 

q4 

q4 

0 

0 

1 

1 

0 

1 

q2 q1 q3 q4 

0,1  
0,1  

1 0,Ů 1 

Input: w = 010110  

NFA ὔ  



Which language is accepted?  
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Definition of computation  
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A NFA has an equivalent DFA  

NFA recognizing 
language ὃ 

DFA recognizing 
language ὃ 



Equivalence NFA and DFA  

Theorem 1.39:  

Every nondeterministic finite automaton 
has an equivalent deterministic finite 
automaton.  

 

Corollary 1.40:  

A language is regular if and only if some 
nondeterministic finite automaton 
recognizes it.  



Proof: Theorem 1.39  
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