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Topics Covered

A Regular languages

A Deterministic finite automata

A Nondeterministic finite automata
A Closure

A Regular expressions

A Non -regular languages

A The pumping lemma
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Finite Automata

A finite automaton M is a 5-tuple
M — (Q:ZJ 5;CI0;F)

where,
1. Q is a finite set called the states

2. X 1s a finite set called the
alphabet

3. 6:0Q0 XX - Q is the transition
function

qo € Q is the start state

5. F € Q is the set of accept states
(also called final states)

N



Finite Automata

| |
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A States: Q= {q1,q. 43}

A Alphabet: ¥ = {0,1}

A Transition function: See edges
A Start state: @

AFinal states: F = {g)
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Which kind of input is accepted?
Afiaaaabbbbaaaa 0 ?
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A An empty string?
An10001110 2
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Finite Automata

Which language Is accepted?

A = {w | w contains at least one 1 and an even

number of Os follows the last 1}

AAM recognizes A0
ARA is the | anguage

L (



Finite Automata I Example

A Which language recognizes M?
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Finite Automata I Example

A And in this case?
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Finite Automata I Example

A What about this one?




Finite Automata I Example

<RESET=>



Finite Automata I Example

A Sums all numerical
symbols that reads
modulo 3.

A Resets the count,
every time it
receives <RESET>.

A Accepts , if the sum
IS a multiple of 3.

<RESET>



Definition of Computation

» Let M be a finite automaton M = (Q, %, 8, qo, F)
» Let w = w; ...w,, be a string over X
» M accepts w if a sequence of states ry, ... 1, exists in Q such that

1. 19 =qo
2. 6(ry,wijyq) =ryforalli=0,..,n—-1
3. 1m €F
» M recognizes language A if A = {w | M accepts w}

DEFINITION 1.16:

A language is called regular language if some finite
automaton recognizes it.




Designing Finite Automata

We want to accept binary strings with
an odd number of 1s



Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states



Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states
2. Design transitions

om 1 mo

()
“~

1



Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states
2. Design transitions
3. Design start state and accept states

() 2 ()
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Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string
2. We have a0
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Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string
2. We have a0

3. We have a 00

4. We have a 001

() o o( 3 (Qoa
R 0 (0 )L
580




Reqgular Operations

Let A and B be languages, we have:

AUnion: AUB={z|z€ Aorzec B}

A Concatenation: AoB={zy|z € Aandy e B}
A Star: A* = {x122...2,, | n >0 and x; € A}

A Example A = {empty, full}; B = {cup, glass}
AAU B?
A Ao B?
A A*?



Closure of Regular Languages

A set S is closed under an operation o if applying o on
elements of S yields elements of S.

« example: multiplication on natural numbers
 counterexample: division of natural numbers

Theorem 1.25:

The class of regular languages is closed under the union

operation.
(In other words: If A; and A, are regular languages, so is

A UA,.)



Proof by Construction

Let M; recognize A; where M; = (Q4,Z%, 61,91, F;), and
M, recognize A, where M; = (Q,,%, 65,95, F5).

Construct M to recognize A; U A,, where M = (Q, %, 8, qo, F).

1. Q ={(r,r,)| 1 € Qandr, € Q3}.
This set is the cartesian product of the sets Q; and Q, (written
Q1 X Q). It is the set of all pairs of states with the first from @, and

the second from Q,.

2. I, thealphabet, is the same as in case of M; and M,. The theorem
remains true if they have different alphabets, £; and X,. We would
then modify the prooftolet X = X; U X,.



Proof by Construction

3. 6, the transistion function, is defined as follows.

N

For each (r,7,) € Q and eacha € %, let

6((T1, Tz), Cl) - (61 (Tl, a), 62 (Tz, a))
Hence § gets a state of M (which actually is a pair of states from M,
and M,), together with an input symbol, and returns M's next state.

qo is the pair (q1,q2).
F is the set of pairs, in which at leadt one member is an accept state of
either M; or M,. We can write this as

F = {(Tl,rz)l &} € F1 orr, € Fz}
This expression is the sameas F = (F; X Q,) U (Q X F,).

(Note: itis not the same as F = F; X F,. Whatwould that give us?)
u



Example

ALM1)={ w|w contains a 1}
AL(M2)={ w|w contains at least two 0s}
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Example

AL(M1) ={ w
AL(M2)={ w

0[] ol

w contains a 1}
w contains at least two 0Os}
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Closure of Regular Languages

Theorem 1.26:

The class of regular languages is closed under the
concatenation operation.
(In other words: If A; and A, are regular languages, so is A; © 4,.)




Closure of Regular Languages

Theorem 1.26:

The class of regular languages is closed under the
concatenation operation.
(In other words: If A; and A, are regular languages, so is A; © 4,.)

Non deterministic
finite automata



Nondeterministic Automata

A Deterministic (DFA)
AOne successor state
A- transitions not allowed

A Nondeterministic  (NFA)
A Several successor states possible

A- transitions possible
01 ﬂ

O’l m
1 0,U 1
Q .



Nondeterministic Computation

Deterministic Nondeterministic
computation computation

: start (- )

04\ ®
0-(\ ‘(_/o

* accept or reject * accept
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Which language Is accepted?




Nondeterministic Automata

DEFINITION 1.37:

A nondeterministic finite automaton is a 5-tuple
(Q! Z; 5; qo, F) With:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 6:Q X Z, - P(Q) is the transition function
4. qq € Q is the start state

5. F € (@ is the set of accept states

Y. includes ¢

P(Q) the powerset of Q
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DEFINITION 1.37:

A nondeterministic finite automaton is a 5-tuple
(Q! Z; 5; qo, F) With:

1. Q afinite set of states

2. X afinite set, the alphabet

3. 6:Q X Z, - P(Q) is the transition function
4. qo € Qgthe start state

5. F € (@ is the set of accept states

Y. includes ¢

P(Q) the powerset of Q




Definition of computation

Let M be a finite automaton (Q, %, 8, qo, F).
Let w = w; ...w,, be a string over X.

M accepts w if a sequence of states ry, ..., 13, exists in Q such that
1. 19 =qo

2. 6(T5,Wi+1) =T foralli = 0,...,77.— 1

3. 1m €EF

M recognizes language A if A = {w | M accepts w}.

A language is regular if some finite automaton recognizes it.



A NFA has an equivalent DFA

30,1
. 0.1 0.1 NFA recognizing
- N > ~———>@ language o

DFA recognizing
language o




Equivalence NFA and DFA

Theorem 1.39:

Every nondeterministic finite automaton
has an equivalent deterministic finite
automaton.

Corollary 1.40:

A language Is regular if and only if some
nondeterministic finite automaton
recognizes It.




Proof: Theorem 1.39

Let N = (Q,Z%, 8y, q9, F) be the NFA recognizing some
language A.

Idea: We show how to construct a DFA M recognizing A for
any such NFA.

We start by only considering the easier case first, wherein N
has no ¢ transitions. The ¢ transitions are taken into
account later.



Proof: Theorem 1.39

Construct M = (Q', %, 84,90, F').

1. Q" =P(Q).
Every state of M is a set of states of N.
(Recall that P(Q) is the power set of Q).

2. ForR € Q' anda € X let
' (R,a) ={q€Q|qed(r a)forsomer € R}.
If R is a state of M, it is also a set of states of N. When M reads a
symbol a in state R, it tells us where a takes each state in R.
Because each state leads to a set of states, we take the union of all
these sets. Alternatively we can write:

0'(R,a) = U 5(r,a)
TER
3. qy = {qo}- M starts in the state corresponding to the collection
containing just the start state of N.



Proof: Theorem 1.39




