
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Regular Languages

Topics Covered

ÁRegular languages

ÁDeterministic finite automata

ÁNondeterministic finite automata

ÁClosure

ÁRegular expressions

ÁNon - regular languages

ÁThe pumping lemma

Finite Automata

ÁSupermarket door control

Finite Automata

ÁSupermarket door control

Front
Pad

Rear
Pad

Finite Automata

ÁSupermarket door control

Open Closed

Rear
Both

Neither

Rear
Both
Front

Front

Neither

Finite Automata

ÁSupermarket door control

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

ÁSupermarket door control

ÁProbabilistic counterparts exists

ÁMarkov chains

ÁBayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

ÁSupermarket door control

ÁProbabilistic counterparts exists

ÁMarkov chains

ÁBayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

Finite Automata

ÁStates:

ÁAlphabet:

ÁTransition function: See edges

ÁStart state:

ÁFinal states:

Finite Automata

Which kind of input is accepted?

Áñaaaabbbbaaaa ò ?

Áñ000000ò ?

ÁAn empty string?

Áñ1000111ò ?

Finite Automata

Which language is accepted?

Áñaaaabbbbaaaa ò ?

Áñ000000ò ?

ÁAn empty string?

Áñ1000111ò ?

Finite Automata

Which language is accepted?

ÁñM recognizes Aò

ÁñA is the language L(M)ò

Finite Automata ï Example

ÁWhich language recognizes M?

q2 q1

0 1
1

0

Finite Automata ï Example

ÁAnd in this case?

q2 q1

0 1
1

0

Finite Automata ï Example

ÁWhat about this one?

Finite Automata ï Example

Finite Automata ï Example

 ÁSums all numerical
symbols that reads ,
modulo 3.

ÁResets the count,
every time it
receives <RESET>.

ÁAccepts , if the sum
is a multiple of 3.

Definition of Computation

-

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

q2 q1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

3. Design start state and accept states

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

q

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

q0 q

1 0

1

0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

q0 q

1 0

1

q00

0

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

4. We have a 001

q0 q

1 0

1

q00

0 0,1

1 0
q001

Regular Operations

Let A and B be languages, we have:

ÁUnion:

ÁConcatenation:

ÁStar:

ÁExample

Á

Á

Á

Closure of Regular Languages

Á

Proof by Construction

Á

Proof by Construction

Á

Example

ÁL(M1) = { w|w contains a 1}

ÁL(M2) = { w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

Example

ÁL(M1) = { w|w contains a 1}

ÁL(M2) = { w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

Example

ÁL(M1) = { w|w contains a 1}

ÁL(M2) = { w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

0

1 1 1

0

0,1
0 0

1 1

Example

ÁL(M1) = { w|w contains a 1}

ÁL(M2) = { w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

0

1 1 1

0

0,1
0 0

1 1

q2
p3

Closure of Regular Languages

Á

Closure of Regular Languages

Á

Non deterministic
finite automata

Nondeterministic Automata

ÁDeterministic (DFA)

ÁOne successor state

Á‐ transitions not allowed

ÁNondeterministic (NFA)

ÁSeveral successor states possible

Á‐ transitions possible

q2 q1 q3 q4

0,1
0,1

1 0,Ů
1

Nondeterministic Computation

Example Run

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

0

0

1

1

0

1

q2 q1 q3 q4

0,1
0,1

1 0,Ů 1

Input: w = 010110

NFA ὔ

Which language is accepted?

Nondeterministic Automata

Á

Nondeterministic Automata

Á

Definition of computation

-

A NFA has an equivalent DFA

NFA recognizing
language ὃ

DFA recognizing
language ὃ

Equivalence NFA and DFA

Theorem 1.39:

Every nondeterministic finite automaton
has an equivalent deterministic finite
automaton.

Corollary 1.40:

A language is regular if and only if some
nondeterministic finite automaton
recognizes it.

Proof: Theorem 1.39

Á

Proof: Theorem 1.39

Á

Proof: Theorem 1.39

Á

