
Theoretical Computer
Science (Bridging Course)

Gian Diego Tipaldi

Regular Languages

Topics Covered

 Regular languages

 Deterministic finite automata

 Nondeterministic finite automata

 Closure

 Regular expressions

 Non-regular languages

 The pumping lemma

Finite Automata

 Supermarket door control

Finite Automata

 Supermarket door control

Front
Pad

Rear
Pad

Finite Automata

 Supermarket door control

Open Closed

Rear
Both

Neither

Rear
Both
Front

Front

Neither

Finite Automata

 Supermarket door control

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

 Supermarket door control

 Probabilistic counterparts exists

 Markov chains

 Bayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

 Supermarket door control

 Probabilistic counterparts exists

 Markov chains

 Bayesian networks

Neither Front Rear Both

Closed Closed Open Closed Closed

Open Closed Open Open Open

Finite Automata

Finite Automata

 States:

 Alphabet:

 Transition function: See edges

 Start state:

 Final states:

Finite Automata

Which kind of input is accepted?

 “aaaabbbbaaaa” ?

 “000000” ?

 An empty string?

 “1000111” ?

Finite Automata

Which language is accepted?

 “aaaabbbbaaaa” ?

 “000000” ?

 An empty string?

 “1000111” ?

Finite Automata

Which language is accepted?

 “M recognizes A”

 “A is the language L(M)”

Finite Automata – Example

 Which language recognizes M?

q2 q1

0 1
1

0

Finite Automata – Example

 And in this case?

q2 q1

0 1
1

0

Finite Automata – Example

 What about this one?

Finite Automata – Example

Finite Automata – Example

 Sums all numerical
symbols that reads,
modulo 3.

 Resets the count,
every time it
receives <RESET>.

 Accepts, if the sum
is a multiple of 3.

Definition of Computation

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

q2 q1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings with
an odd number of 1s

1. Design states

2. Design transitions

3. Design start state and accept states

q2 q1

0 0 1

1

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

q

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

q0 q

1 0

1

0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

q0 q

1 0

1

q00

0

1 0

Designing Finite Automata

We want to accept binary strings
containing 001 as substring

1. No symbols of the string

2. We have a 0

3. We have a 00

4. We have a 001

q0 q

1 0

1

q00

0 0,1

1 0
q001

Regular Operations

Let A and B be languages, we have:

 Union:

 Concatenation:

 Star:

 Example

Closure of Regular Languages

Proof by Construction

Proof by Construction

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

q2
p3

0

1 1 1

0

0,1
0 0

1 1

Example

 L(M1) = {w|w contains a 1}

 L(M2) = {w|w contains at least two 0s}

q1 q2

0 0,1

1
p2 p1 p3

1 0,1

0 0

1

0 q1
p1

q1
p2

q1
p3

q2
p1

q2
p2

0

1 1 1

0

0,1
0 0

1 1

q2
p3

Closure of Regular Languages

Closure of Regular Languages

Non deterministic
finite automata

Nondeterministic Automata

 Deterministic (DFA)

 One successor state

 𝜀 transitions not allowed

 Nondeterministic (NFA)

 Several successor states possible

 𝜀 transitions possible

q2 q1 q3 q4

0,1
0,1

1 0,ε
1

Nondeterministic Computation

Example Run

q1

q1

q3 q2 q1

q3 q1

q2 q1 q3 q4

q4

q4

q2 q1 q3

q3 q1

q4

q4

0

0

1

1

0

1

q2 q1 q3 q4

0,1
0,1

1 0,ε 1

Input: w = 010110

NFA 𝑁1

Which language is accepted?

Nondeterministic Automata

Nondeterministic Automata

Definition of computation

A NFA has an equivalent DFA

NFA recognizing
language 𝐴

DFA recognizing
language 𝐴

Equivalence NFA and DFA

Theorem 1.39:

Every nondeterministic finite automaton
has an equivalent deterministic finite
automaton.

Corollary 1.40:

A language is regular if and only if some
nondeterministic finite automaton
recognizes it.

Proof: Theorem 1.39

Proof: Theorem 1.39

Proof: Theorem 1.39

Proof: Theorem 1.39 (ctd.)

Example

 Consider the following NFA

 What is the corresponding DFA?

Example

 Resulting DFA for the example before

Example

 Simplified DFA for the example before

Closure of Regular Operations

Closure of Regular Operations

 Regular languages are closed under
the union operation

Proof

Closure of Regular Operations

 Regular languages are closed under
the concatenation operation

Proof

Closure of Regular Operations

 Regular languages are closed under
the star operation

Proof

Regular Expressions

Regular Expressions – Examples

Regular Expressions – Examples

Applications of Regular
Expressions

 Design of compilers

 Search for strings (awk, grep, …)

 Programming languages

 Bioinformatics (repetitive patterns)

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Equivalence of RE and NFA

Theorem 1.54 (page 66):

A language is regular if and only if some
regular expression describes it.

Two directions to consider

RE <-> NFA

Equivalence of RE and NFA

Lemma 1.55 (page 67):

If a language is described by some
regular expression, then it is regular.

Lemma 1.60 (page 69):

If a language is regular, then it can be
described by some regular expression.

Proof RE -> NFA

Proof RE -> NFA: Case 1

a

Proof RE -> NFA: Cases 2 & 3

Proof RE -> NFA: Case 4, 5 & 6

Example

Let consider the expression (ab U a)*

 Convert the expression into a NFA

 Start from the smallest subexpression

 Include the other subexpressions

 Note: The states might be redundant!

Example: (ab U a)*

 a

 b

 ab

 ab U a

 (ab U a)*

a

b

a b ε

a b ε

a

ε

ε

a b ε

a

ε

ε

ε

ε

ε

Exercise: (ab U a)*

 Let’s do it together!

Exercise: (a U b)*aba

a

b

ε

ε

ε

a b ε a ε a b ε a ε ε

ε

ε

Proof NFA -> RE

Lemma 1.60 (page 69):

If a language is regular, then it can be
described by a regular expression.

Two steps:

 Convert DFA into GNFA

 Convert GNFA into regular expression

Generalized NFA

 Labels are regular expressions

 States connected in both directions

 Start state only exit transitions

 Accept state only incoming transitions

 Only one accept state

Generalized NFA

qstart

qaccept

b

ab

Ø

b*

ab*

ab∪ba a*

(aa)*

aa

Generalized NFA

Generalized NFA

Proof DFA -> GNFA

 Add a new start state

 Connect it with 𝜀 transitions

 Add a new accept state

 Connect it with 𝜀 transitions

 Replace multiple labels with unions

 Add transitions with ∅ when not present
in the original DFA

Proof DFA -> GNFA

 DFA GNFA

Convert GNFA into RE

3 state DFA 5 state GNFA 4 state GNFA

2 state GNFA 3 state GNFA
Regular

Expression

Convert GNFA into RE

Ripping of States

Replace one state with the
corresponding regular expression

q2 q1

q2

qrip

q1

R4

R1

R2

R3

(R1)(R2)* (R3) ∪ R4

Example: From DFA to GNFA

Example: Rip State 2

Example: Rip State 1

Another Example

1 2
a

a

3

b

b a

b

s

1 2
a

a

3

b

b a

b

ε

a

ε

ε

s

2

3

a

ε

ε

a

aa ∪b

ab

b

ba ∪a

bb

Rip 1: Rip 2:

GNFA: DFA:

s

3

a
a(aa ∪b)*

a(aa ∪b)*ab ∪b (ba ∪a) (aa ∪b)* ∪ε

(ba ∪a) (aa ∪b)*ab ∪ bb

s a

Rip 3:
(a(aa ∪b)*ab ∪b)((ba ∪a) (aa ∪b)*ab ∪ bb)*((ba ∪a) (aa ∪b)* ∪ε) ∪a(aa ∪b)*

Equivalence Proof

Equivalence Proof

Equivalence Proof

q2 q1

q2

qrip

q1

R4

R1

R2

R3

(R1)(R2)* (R3) ∪ R4

Nonregular Languages

 Finite automata have finite memory

 Are the following language regular?

 How can we prove it mathematically?

{0 1 | 0}

{ | h a s a n e q u a l n u m b e r o f 0 s a n d 1 s }

{ | h a s a n e q u a l n u m b e r o f o c c u re n c e s o f 0 1 a n d 1 0 }

n n
B n

C w w

D w w

The Pumping Lemma

Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof Idea

 Let M be a DFA recognizing A

 Let p be the numbers of states in M

 Show that s can be broken into xyz

 Prove the conditions holds

Proof of the Pumping Lemma

Use of the Pumping Lemma

Nonregular Languages

Nonregular Languages

Nonregular Languages

Nonregular Languages

Example Exam Question

Summary

 Deterministic finite automata

 Regular languages

 Nondeterministic finite automata

 Closure operations

 Regular expressions

 Nonregular languages

 The pumping lemma

