Theoretical Computer Science (Bridging Course)

Context Free Languages

Gian Diego Tipaldi

Topics Covered

- Context free grammars
- Pushdown automata
- Equivalence of PDAs and CFGs
- Non-context free grammars
- The pumping lemma

Context Free Grammars

- Extend regular expressions
- First studied for natural languages
- Often used in computer languages
- Compilers
- Parsers
- Pushdown automata

Context Free Grammars

- Collection of substitution rules
- Rules: Symbol -> string
- Variable symbols (Uppercase)
- Terminal symbols (lowercase)
- Start variable

Context Free Grammars

- Example grammar G1:

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- A, B are variables
- 0,1,\# are terminals
- A is the start variable

Context Free Grammars

Example string: 000\#111

Does it belong to the grammar?

Context Free Grammars

Example string: 000\#111

- A -> 0A1
- 0A1 ->00A11
- 00A11 -> 000A111
- 000A111 -> 000B111
- 000B111 -> 000\#111

Context Free Grammars

Example string: 000\#111

- A -> OA1
- OA1 ->00A11
- 00A11 -> 000A111
- 000A111 -> 000B111
- 000B111 -> 000\#111

Context Free Grammars

Example string: 000\#111

- A -> 0A1
- 0A1 ->00A11
- 00A11 -> 000A111
- 000A111 -> 000B111
- 000B111 -> 000\#111

000\#111 in G_{1}

$$
L\left(G_{1}\right)=\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}
$$

Natural Language Example

```
        <SENTENCE> }->\mathrm{ <NOUN-PHRASE><VERB-PHRASE>
<NOUN-PHRASE> }->\mathrm{ <CMPLX-NOUN>|<CMPLX-NOUN><PREP-PHRASE>
<VERB-PHRASE> }->\mathrm{ 〈CMPLX-VERB>|CCMPLX-VERB><PREP-PHRASE>
<PREP-PHRASE> }->\mathrm{ <PREP><CMPLX-NOUN>
<CMPLX-NOUN> }->\mathrm{ <ARTICLE><NOUN>
<CMPLX-VERB> }->\mathrm{ 〈VERB>|<VERB><NOUN-PHRASE>
    <ARTICLE> }->\mathrm{ a|the
        <NOUN> }->\mathrm{ boy | girl | flower
        <VERB> }->\mathrm{ touches|likes | sees
        <PREP> }->\mathrm{ with
```

- A boy sees
- The boy sees the flower
- A girl with the flower likes the boy

Context Free Grammar

Definition 2.2:

A context-free grammar is a 4-tuple

$$
(V, \Sigma, R, S)
$$

where:

- V is the set of variables
- Σ is the set of terminals, $\Sigma \cap V=\emptyset$
- R is the set of rules
- $S \in V$ is the start symbol

Language of a grammar

- u,v,w are strings, A->w a rule
- uAv yields uwv: uAv \Rightarrow uwv
- u derives $v: ~ u \stackrel{*}{\Rightarrow} v$ if

$$
u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{k} \Rightarrow v
$$

- Language of a grammar

$$
\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Parsing a string

- Consider the following grammar

$$
\begin{aligned}
& G_{3}=(V, \Sigma, R,<\text { Expr }>\} \\
& V=\{<E x p r>,<\text { Term }>,<\text { Factor }>\} \\
& \Sigma=\{a,+, \times,(,)\} \\
& R \text { is } \\
& <\text { Expr }>\rightarrow<\text { Expr }>+<\text { Term }>\mid<\text { Term }> \\
& <\text { Term }>\rightarrow<\text { Term }>\times<\text { Factor }>\mid<\text { Factor }> \\
& <\text { Factor }>\rightarrow(<\text { Expr }>) \mid a
\end{aligned}
$$

- What are the parse trees of
- $a+a x a$
- $(a+a) \times a$

Parsing a string

Designing Grammars

Harder than designing automata

Few techniques can be used

- Union of context free languages
- Conversion from DFA (regular)
- Exploit linked variables ($0^{n} 1^{n}$)
- Exploit recursive structure (trickier)

Union of Different CFGs

$$
\begin{array}{ll}
S_{1} \rightarrow 0 S_{1} 1 \mid \varepsilon & L\left(G_{1}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
S_{2} \rightarrow 1 S_{2} 0 \mid \varepsilon & L\left(G_{2}\right)=\left\{1^{n} 0^{n} \mid n \geq 0\right\} \\
S \rightarrow S_{1} \mid S_{2} & L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)
\end{array}
$$

Conversion from DFAs

- Take the same vocabulary: $\Sigma_{g}=\Sigma_{a}$
- For each state q_{i} insert a variable R_{i}
- For each transition $\delta\left(q_{i}, a\right)=q_{j}$ insert

$$
R_{i} \rightarrow a R_{j}
$$

- For each accept state q_{k} insert

$$
R_{k} \rightarrow \epsilon
$$

Conversion from DFAs

- Take the same vocabulary: $\Sigma=\{0,1\}$
- Insert all the variables: $\mathrm{V}=\left\{R_{1}, R_{2}\right\}$
- Insert the rules:

$$
\begin{array}{ll}
R_{1} \rightarrow 0 R_{1}, & R_{1} \rightarrow 1 R_{2} \\
R_{2} \rightarrow 0 R_{1}, & R_{2} \rightarrow 1 R_{2} \\
R_{2} \rightarrow \epsilon &
\end{array}
$$

Designing Linked Strings

- Languages of the type

$$
L\left(G_{1}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- Create rules of the form

$$
R \rightarrow u R v
$$

- For the language above

$$
S \rightarrow 0 S 1 \mid \epsilon
$$

Designing Recursive Strings

- Example are arithmetic expressions
$<$ Expr $>\rightarrow<$ Expr $>+<$ Term $>\mid<$ Term $>$
$<$ Term $>\rightarrow<$ Term $>\times<$ Factor $>\mid<$ Factor $>$
$<$ Factor $>\rightarrow(<$ Expr $>) \mid a$
- Create the recursive structure <Expr>
- Place it where it appear <Factor>

Ambiguity

- Generate a string in several ways
- E.g., grammar G5:
$<$ Expr $>\rightarrow<$ Expr $>+<$ Expr $>\mid<$ Expr $>\times<$ Expr $\rangle(<$ Expr $\rangle) \mid a$
- No usual notion of precedence
- Natural language processing
- "a boy touches a girl with the flower"

Ambiguity

- Consider the string: a + a x a

Ambiguity - Definition

- Leftmost derivation: At every step, replace the leftmost variable
- A string is generated ambiguously if it has multiple leftmost derivations
- A CFG is ambiguous if generates some string ambiguously
- Some context free languages are inherently ambiguous

$$
\left\{01^{i} 2^{k} \mid i=j \text { or } j=k\right\}
$$

Chomsky Normal Form (CNF)

Definition 2.8:
A context-free grammar is in Chomsky normal form if every rule is of the form

$$
\begin{aligned}
& A \rightarrow B C \\
& A \rightarrow a
\end{aligned}
$$

where a is any terminal and A, B, and C are any variables-except that B and C may not be the start variable. In addition we permit the rule $S \rightarrow \varepsilon$, where S is the start variable.

Chomsky Normal Form (CNF)

Theorem 2.9:
Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof Idea

- Rewrite the rules not in CNF
- Introduce new variables
- Four cases:
- Start variable on the right side
- Epsilon rules: $A \rightarrow \varepsilon$
- Unit rules: $A \rightarrow B$
- Long and/or mixed rules: $A \rightarrow a A b b B a B$

Proof Idea

- Start variable on the right side
- Introduce a new start and $S_{1} \rightarrow S_{0}$
- Epsilon rules: $A \rightarrow \varepsilon$
- Introduce new rules without A
- Unit rules: $A \rightarrow B$
- Replace B with its production
- Long and/or mixed rules: $A \rightarrow a A b b B a B$
- New variables and new rules

Formal Proof: by Construction

1. Add a new start symbol $S_{-} 0$ and the rule $S_{0} \rightarrow S$, where S is the old start
2. Remove all rules $A \rightarrow \epsilon$:

- For each $R \rightarrow u A v$ add $R \rightarrow u v$
- For each $R \rightarrow A$ add $R \rightarrow \epsilon$
- Repeat until all gone (keep $S_{0} \rightarrow \epsilon$)

3. Remove all rules $A \rightarrow B$:

- For each $B \rightarrow u$ add $A \rightarrow u$
- Repeat until all gone

Formal Proof: by Construction

4. Convert all rules $A \rightarrow u_{1} \ldots u_{k}, k \geq 3$ in:

- $A \rightarrow u_{1} A_{1}$
- $A_{1} \rightarrow u_{2} A_{2}, \ldots$
- $A_{k-2} \rightarrow u_{k-1} u_{k}$

5. Convert all rules $A \rightarrow u_{1} u_{2}$:

- Replace any terminal u_{i} with U_{i}
- Add the rules $U_{i} \rightarrow u_{i}$
- Be careful of cycles!

CNF: Example 2.10 from Book

- Convert the CFG in CNF

$$
\begin{aligned}
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

- Added rules in bold
- Removed rules in stroke

CNF: Example 2.10 from Book

- Add the new start symbol

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A \mid a B \\
& A \rightarrow B \mid S \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove the empty rule $B \rightarrow \varepsilon$

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|a B| a \\
& A \rightarrow B|S| \varepsilon \\
& B \rightarrow b \mid \varepsilon
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove the empty rule $A \rightarrow \varepsilon$

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|a B| a|S A| A S \mid S \\
& A \rightarrow B|S| \varepsilon \\
& B \rightarrow b
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove unit rule: $S \rightarrow S$

$$
\begin{aligned}
& S_{0} \rightarrow S \\
& S \rightarrow A S A|a B| a|S A| A S \mid £ \\
& A \rightarrow B \mid S \\
& B \rightarrow b
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove unit rule: $S_{0} \rightarrow S$

$$
\begin{aligned}
& S_{0} \rightarrow S|A S A| a B|a| S A \mid A S \\
& S \rightarrow A S A|a B| a|S A| A S \\
& A \rightarrow B \mid S \\
& B \rightarrow b
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove unit rule: $A \rightarrow B$

$$
\begin{aligned}
& S_{0} \rightarrow A S A|a B| a|S A| A S \\
& S \rightarrow A S A|a B| a|S A| A S \\
& A \rightarrow B|S| b \\
& B \rightarrow b
\end{aligned}
$$

CNF: Example 2.10 from Book

- Remove unit rule: $A \rightarrow S$

$$
\begin{aligned}
& S_{0} \rightarrow A S A|a B| a|S A| A S \\
& S \rightarrow A S A|a B| a|S A| A S \\
& A \rightarrow \mathcal{S}|b| A S A \mid \boldsymbol{a B | a | S A | A S} \\
& B \rightarrow b
\end{aligned}
$$

CNF: Example 2.10 from Book

- Convert the remaining rules

$$
\begin{aligned}
& S_{0} \rightarrow A A_{1}|\boldsymbol{U} B| a|S A| A S \\
& S \rightarrow A A_{\mathbf{1}}|\boldsymbol{U} B| a|S A| A S \\
& A \rightarrow b\left|A \boldsymbol{A}_{\mathbf{1}}\right| \boldsymbol{U} B|a| S A \mid A S \\
& \boldsymbol{A}_{\mathbf{1}} \rightarrow \boldsymbol{S A} \\
& \boldsymbol{U} \rightarrow \boldsymbol{a} \\
& B \rightarrow b
\end{aligned}
$$

Pushdown Automata (PDA)

- Extend NFAs with a stack
- The stack provides additional memory
- Equivalent to context free grammars
- They recognize context free languages

Finite State Automata

- Can be simplified as follow

- State control for states and transitions
- Tape to store the input string

Pushdown Automata

- Introduce a stack component

- Symbols can be read and written there

What is a Stack?

- Stacks are special containers
- Symbols are "pushed" on top
- Symbols can be "popped" from top
- Last in first out principle
- Similar to plates in cafeteria

Formal Definition of PDA

A pushdown automata is a 6-tuple

$$
\left(Q, \Sigma, \Gamma, \delta, q_{o}, F\right)
$$

- Q is a finite set of states
- Σ is a finite set, the input alphabet
- Γ is a finite set, the stack alphabet
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow P\left(Q \times \Gamma_{\epsilon}\right)$ is the transition function
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is the set of accept states

Transition Function

- Maps (state, in, stk) in (state, stk)
- Can include empty symbols
- \$ is used to indicate the stack end

Input	0			1			ϵ		
Stack	0	\$	e	0	\$	E	0	\$	ε
q_{1}									$\left\{\left(\mathrm{q}_{2}, \$\right)\right\}$
q_{2}			$\left\{\left(\mathrm{q}_{2}, 0\right)\right\}$	$\left\{\left(\mathrm{q}_{3}, \epsilon\right)\right\}$					
q_{3}				$\left\{\left(\mathrm{q}_{3}, \mathrm{E}\right)\right.$ \}				$\left\{\left(\mathrm{q}_{4}, \epsilon\right)\right\}$	
q_{4}									

Example PDA

- PDA for the language

$$
L\left(G_{1}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Computation of the PDA

Compute keeping track of

- String
- State
- Stack

Computation of the PDA

Compute keeping track of

- String
- State
- Stack

Computation of the PDA

Compute keeping track of

- String
- State

$$
\left(0011, q_{1}, \varepsilon\right)
$$

$\left(0011, q_{2}, \$\right)$

- Stack
(011, $q_{2}, 0 \$$)
\downarrow

$\left(11, q_{2}, 00 \$\right)$
\downarrow
$\left(1, q_{3}, 0 \$\right)$
\downarrow
$\left(\varepsilon, q_{3}, \$\right)$
\downarrow
$\left(q_{4}, \varepsilon\right)$ accept

Definition of Computation

Let M be a pushdown automaton ($Q, \Sigma, \Gamma, \delta, q_{0}, F$)
Let $w=w_{1} \ldots w_{n}$ be a string over Σ
M accepts w if $w \in \Sigma^{*}$ and $w=w_{1} \ldots w_{n}$ where $w_{i} \in \Sigma_{\varepsilon}$ and a sequence of states r_{0}, \ldots, r_{n} exists in Q and strings s_{0}, \ldots, s_{n} exists in Γ^{*} such that

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$

2 for all $i=0, \ldots, n-1$
$\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=a t$ and $s_{i+1}=b t$
for some $a, b \in \Gamma_{\varepsilon}$ and some $t \in \Gamma^{*}$
3. $r_{n} \in F$

No explicit test for empty stack and end of input

Another Example of PDA

$$
L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Another Example of PDA

$$
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}
$$ w^{R} is w written "backwards"

Equivalence of PDAs and CFLs

Theorem 2.20:
A language is context free if and only if some pushdown automaton recognizes it.

Lemma 2.21:
If a language is context free, then some pushdown automaton recognizes it. (Forward direction of proof)

Lemma 2.21: Proof Idea

- Construct a PDA P for the grammar
- P accepts w if there is a derivation
- Non determinism for multiple rules
- Represent intermediate strings on PDA
- Store the variables on the stack

Lemma 2.21: Proof Idea

- Representing 01A1A0

Proof by Construction

1. Place the marker symbol \$ and the start variable on the stack.
2. Repeat the following steps forever. There are three possible cases:
a. The top of stack is a variable symbol A;
b. The top of stack is a terminal symbol a;
c. The top of stack is the symbol \$

Proof by Construction

The top of stack is a variable symbol A Non-deterministically select one of the rules for A and substitute A on the stack.

The top of stack is a terminal symbol a Read the next symbol from the input and compare it to a. If they match, repeat. If they do not match, reject the branch.

Proof by Construction

The top of stack is the symbol \$
Enter the accept state. Doing so accepts the input if it has all been read.

Proof by Construction

PDA to substitute a whole string

Proof by Construction

- Final PDA to accept the string

$\begin{array}{ll}\varepsilon, A \rightarrow w & \text { for rule } A \rightarrow w \\ \mathrm{a}, \mathrm{a} \rightarrow \varepsilon & \text { for terminal a }\end{array}$

Example 2.25 From the Book

- Construct a PDA to accept the CFG

$$
\begin{aligned}
& S \rightarrow a T b \mid b \\
& T \rightarrow T a \mid \varepsilon
\end{aligned}
$$

Example 2.25 From the Book

- Construct a PDA to accept the CFG

$$
\begin{aligned}
& S \rightarrow a T b \mid b \\
& T \rightarrow T a \mid \varepsilon
\end{aligned}
$$

Equivalence of PDAs and CFLs

Lemma 2.27:

If a pushdown automaton recognizes some languages, then it is context free. (Backward direction of proof)

Assumptions:

1. The PDA has a single accept state
2. The PDA empties the stack before accepting
3. Transitions either push or remove symbols

Lemma 2.27: Assumptions

- Assumption 1
- Create a new accept state with empty transitions from the previous ones
- Assumption 2
- Creates dummy transitions to empty the stack before accepting

Lemma 2.27: Assumptions

- Assumption 3
- Replace each transitions that pushes and pops with two transitions and a new state
- Replace each transitions without push and pop with two transitions that push and pop a dummy symbol and a new state

Lemma 2.27: Proof

Say that $P=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ and construct G. The variables of G are $\left\{A_{p q} \mid p, q \in Q\right\}$. The start variable is $A_{q_{0}, q_{\text {accep }} t}$.

Now we describe G 's rules.

- For each $p, q, r, s \in Q ; t \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \varepsilon)$
contains (r, t) and $\delta(s, b, t)$ contains (q, ε) put the rule $A_{p q} \rightarrow a A_{r s} b$ in G.
- For each $p, q, r \in Q$ put the rule $A_{p q} \rightarrow A_{p r} A_{r q}$ in G.
- Finally, for each $p \in Q$ put the rule $A_{p p} \rightarrow \varepsilon$ in G.

You may gain some intuition for this construction from the following figures.

Inserting $A_{p q} \rightarrow a A_{r s} b$

by $A_{r s}$

Inserting $A_{p q} \rightarrow A_{p r} A_{r q}$

Lemma 2.27: Proof

- We now need to prove that the construction works
- $A_{p q}$ generates \boldsymbol{x} iff \boldsymbol{x} brings P from \boldsymbol{p} with an empty stack to \boldsymbol{q} with an empty stack
- Prove by induction

Lemma 2.27: Proof (Forward)

If $A_{p q}$ generates x, it brings P from \boldsymbol{p} with empty stack to \boldsymbol{q} with empty stack

Basis: The derivation has 1 step There is only one rule possible $\boldsymbol{A}_{p p} \rightarrow \boldsymbol{\epsilon}$ which trivially brings P from p to p.

Lemma 2.27: Proof (Forward)

Induction:

Assume true for k steps, prove for $\mathrm{k}+1$ Case a): $A_{p q} \Rightarrow a A_{r s} b$ $x=a y b$ and $A_{r s} \stackrel{*}{\Rightarrow} y$ in k steps with empty stack (induction assumption). Now, because $A_{p q} \Rightarrow a A_{r s} b$ in G, we have

$$
\delta(p, a, \varepsilon) \ni(r, t) \text { and } \delta(s, b, t) \ni(q, \varepsilon)
$$

Therefore, x can bring P from p to q with empty stack.

Lemma 2.27: Proof (Forward)

Induction:

Assume true for k steps, prove for $\mathrm{k}+1$ Case b): $A_{p q} \Rightarrow A_{p r} A_{r q}$
$x=y z$ such that $A_{p r} \stackrel{*}{\Rightarrow} y$ and $A_{p r} \stackrel{*}{\Rightarrow} z$ in at most k steps with empty stack.
Therefore, x can bring P from p to q with empty stack.

Lemma 2.27: Proof (Backward)

If \boldsymbol{x} brings \boldsymbol{P} from \boldsymbol{p} with empty stack to \boldsymbol{q} with empty stack, then $A_{p q}$ generates \boldsymbol{x} Basis: The computation has 0 steps If it has 0 steps, it starts and ends in the same state. P can only read the empty string. The rule $A_{p p} \rightarrow \boldsymbol{\epsilon}$ generates it.

Lemma 2.27: Proof (Backward)

Induction:

Assume true for k steps, prove for $k+1$ Case a): Stack is not empty in between The symbol pushed at the beginning is the same popped at the end, we have therefore $A_{p q} \rightarrow a A_{r s} b$ in the grammar. We have $x=a y b$, from induction we have $A_{r s} \stackrel{*}{\Rightarrow} y$, therefore $A_{p q} \stackrel{*}{\Rightarrow} a y b$

Lemma 2.27: Proof (Backward)

Induction:

Assume true for k steps, prove for $k+1$ Case b): Stack is empty in between There exists a state r in between and computations from p to r and r to q have at most k steps. We have $x=y z$, from induction $A_{p r} \stackrel{*}{\Rightarrow} y$ and $A_{r q} \stackrel{*}{\Rightarrow} z$. Since $A_{p q} \rightarrow A_{p r} A_{r q}$ is in the grammar, we have that $A_{p q} \stackrel{*}{\Rightarrow} y z$

Regular vs. Context Free

- Every regular language is context free - NFAs are PDAs without a stack!

Pumping Lemma

Theorem Pumping Lemma
If A is a context free language, then there is a number p
such that if s is any string in A of length at least p
then s may be dived into $s=u v x y z$ such that

1. For each $i \geq 0 ; u v^{i} x y^{i} z \in A$
2. $|v y|>0$
3. $|v x y| \leq p$

Remember the Parse Tree?

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof Idea

- Let T be the parse tree for A
- Show that s can be broken into uvxyz
- Prove the conditions holds

Pumping Lemma: Proof

- Let b be the maximum number of symbols on right hand side of a rule
- The number of leaves in a parse tree of height h is at most b^{h}
- Hence, for any string s of such parse tree, its length $|\mathrm{s}| \leq b^{h}$
- Let $|V|$ be the number of variables and choose the pumping length $p=b^{|V|+2}$

Pumping Lemma: Proof

- For any $|s| \geq p$: possible parse trees for s have height at least $|V|+1$
- let τ be the minimum parse tree for s - It must contain a path P from root to a leaf of length at least $|V|+1$
- P has at least $|V|+2$ nodes: one terminal and the rest variables
- P has at least $|V|+1$ variables \rightarrow some variable must be doubled!

Pumping Lemma: Proof Cnd. 1

- Divide s into uvxyz as in picture.
- R generates $v x y$, with a large subtree, or just x, with a smaller subtree.
- Pumping down gives $u x z$; pumping up gives $u v^{i} x y^{i} z$ with $i \geq 1$

Pumping Lemma: Proof Cnd. 2

- Condition states $|v y|>0$.
- We must be sure v and y are not ε.
- Assuming they were ε, substituting smaller for bigger subtree would lead to parse tree with fewer nodes.
- Contradiction: τ chosen to be parse tree with fewest number of nodes

Pumping Lemma: Proof Cnd. 3

- Condition states $|v x y| \leq p$
- Upper occurrence of R generates $v x y$
- R chosen such that both occurrences fall within the bottom $|V|+1$ variables on the path and longest path
- Subtree where R generates $v x y$ is at most $|V|+2$ high.
- A tree of height $|V|+2$ can generate strings of length at most $b^{|V|+2}=p$

Non Context Free Languages

$$
B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

- Choose $a^{p} b^{p} c^{p}$
- Find uvxyz , either v or y not empty (2)
- Two cases:
- Contain only one type of symbol: Impossible to respect the equal number
- Contain mixed symbols:

Impossible to keep the order of symbols

Non Context Free Languages

$$
C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}
$$

- Choose $a^{p} b^{p} c^{p}$
- Find uvxyz , either v or y not empty (2)
- Two cases as before:
- Contain only one type of symbol More complex to prove (next slide)
- Contain mixed symbols Impossible to keep the order of symbols

Non Context Free Languages

$$
C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}
$$

- Contain only one type of symbol
- a does not appear: we have that $u v^{0} x y^{0} z \notin C$ (less b and c)
- b does not appear: if a appears, $u v^{2} x y^{2} z \notin C$ (more a than b) if c appears, $u v^{0} x y^{0} z \notin C$ (more c than b)
- c does not appear:
we have that $u v^{2} x y^{2} z \notin C$ (more a and b)

Example Exam Question

Q: Let $G=\langle\{S\},\{0,1\}, R, S\rangle$ be the CFG with rules:

$$
S \rightarrow 0 S 0|1 S 1| 0|1| \epsilon
$$

Specify a CFG G_{0} in Chomsky Normal Form such that $L\left(G_{0}\right)=L(G)$.
A: Follow the algorithm:
(a) Introduce an additional start variable and the rule $S_{1} \rightarrow S$
(b) Remove the ϵ rules:

$$
S_{1} \rightarrow S|\epsilon \quad S \rightarrow 0 S 0| 1 S 1|0| 1|00| 11
$$

(c) Remove the unit rules:

$$
S_{1} \rightarrow 0 S 0|1 S 1| 0|1| 00|11| \epsilon \quad S \rightarrow 0 S 0|1 S 1| 0|1| 00 \mid 11
$$

(d) Remove the long rules:

$$
\begin{array}{rlrl}
S_{1} & \rightarrow U_{0} U_{S 0}\left|U_{1} U_{S 1}\right| 0|1| U_{0} U_{0}\left|U_{1} U_{1}\right| \epsilon \quad S & \rightarrow U_{0} U_{S 0}\left|U_{1} U_{S 1}\right| 0|1| U_{0} U_{0} \mid U_{1} U_{1} \\
U_{S 0} & \rightarrow S U_{0} & U_{S 1} & \rightarrow S U_{1} \\
U_{0} & \rightarrow 0 & U_{1} & \rightarrow 1
\end{array}
$$

Summary

- Context free grammars
- Pushdown Automata
- Equivalence of PDAs and CFGs
- Non-context free grammars
- Pumping lemma

