Theoretical Computer Science (Bridging Course)

First Order Logic

Motivation

Propositional logic does not allow talking about structured objects.

A famous syllogism

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

It is impossible to formulate this in propositional logic.

→ first-order logic (predicate logic)

Elements of logic (recap)

The same questions as before:

- Which elements are well-formed? → syntax
- What does it mean for a formula to be true? → semantics
- When does one formula follow from another? → inference

We will now discuss these questions for first-order logic (but only touching the topic of inference briefly).

Building blocks of propositional logic

In propositional logic, we can only talk about formulae (propositions).

An interpretation tells us which formulae are true (or false).

Building blocks of first-order logic

In first-order logic, there are two different kinds of elements under discussion:

- terms identify the object under discussion
 - "Socrates"
 - "the square root of 5"
- formulae state properties of the objects under discussion
 - "All men are mortal."
 - "The square root of 5 is greater than 2."

An interpretation tells us which object is denoted by a term, and which formulae are true (or false).

Syntax of first-order logic: signatures

Definition (signature)

A (first-order) signature is a 4-tuple $S = \langle V, C, F, R \rangle$ consisting of the following four (disjoint) parts:

- a set V of variable symbols,
- a set C of constant symbols,
- a set F of function symbols,
- a set R of relation symbols (also called predicate symbols)

Syntax of first-order logic: signatures

Definition (signature)

Each function symbol $f \in \mathcal{F}$ and relation symbol $R \in \mathcal{R}$ has an associated arity (number of arguments) arity(f), $arity(R) \in \mathbb{N}_1$.

Terminology: A k-ary (function or relation) symbol is a symbol s with arity(s) = k.

Also: unary, binary, ternary

Syntax of first-order logic: signatures

Conventions:

- variable symbols are typeset in *italics*, other symbols in an upright typeface
- relation symbols begin with upper-case letters, other symbols with lower-case letters

Signatures: examples

Example: arithmetic

- $\mathbf{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{zero}, \text{one}\}$
- $\mathcal{F} = \{\text{sum}, \text{product}\}$
- R = {Positive, PerfectSquare}

```
arity(sum) = arity(product) = 2,
arity(Positive) = arity(PerfectSquare) = 1
```

Signatures: examples

Example: genealogy

- $\mathbf{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $C = \{\text{queen-elizabeth}, \text{donald-duck}\}$
- lacksquare $\mathcal{F} = \emptyset$
- $\mathcal{R} = \{\text{Female}, \text{Male}, \text{Parent}\}$

```
arity(Female) = arity(Male) = 1,
arity(Parent) = 2
```

Syntax of first-order logic: terms

Definition (term)

Let $S = \langle V, C, F, R \rangle$ be a signature. A term (over S) is inductively constructed according to the following rules:

- Each variable symbol $v \in V$ is a term.
- Each constant symbol $c \in C$ is a term.
- If t_1, \ldots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k, then $f(t_1, \ldots, t_k)$ is a term.

Syntax of first-order logic: terms

Examples:

- $\blacksquare x_4$
- donald-duck
- $sum(x_3, product(one, x_5))$

Syntax of first-order logic: formulae

Definition (formula)

Let $S = \langle V, C, F, R \rangle$ be a signature. A formula (over S) is inductively constructed as follows:

- $R(t_1,...,t_k)$ (atomic formula; atom) where $R \in \mathcal{R}$ is a k-ary relation symbol and $t_1,...,t_k$ are terms (over \mathcal{S})
- $t_1 = t_2$ (atomic formula; equality) where t_1 and t_2 are terms (over S)

Syntax of first-order logic: formulae

Definition (formula)

Let $S = \langle V, C, F, R \rangle$ be a signature.

A formula (over S) is inductively constructed as follows:

- ⊤ (truth)
- ⊥ (falseness)
- $\forall x \varphi$ (universal quantification)
- $\exists x \varphi$ (existential quantification) where $x \in \mathcal{V}$ is a variable symbol and φ is a formula over \mathcal{S}

Syntax of first-order logic: formulae

Definition (formula)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle$ be a signature.

A formula (over S) is inductively constructed as follows:

- $\neg \varphi$ (negation)
- $(\varphi \wedge \psi)$ (conjunction)
- $(\varphi \lor \psi)$ (disjunction)
- $(\varphi \rightarrow \psi)$ (material conditional)
- $(\varphi \leftrightarrow \psi)$ (biconditional) where φ and ψ are formulae over $\mathcal S$

Syntax: examples

Example: arithmetic and genealogy

- \blacksquare Positive(x_2)
- \blacksquare $\forall x \, \mathsf{PerfectSquare}(x) \to \mathsf{Positive}(x)$
- $\exists x_3 \, \mathsf{PerfectSquare}(x_3) \land \neg \mathsf{Positive}(x_3)$
- $\blacksquare \ \forall x (x=y)$
- $\forall x (\mathsf{sum}(x, x) = \mathsf{product}(x, \mathsf{one}))$
- $\forall x \exists y (\mathsf{sum}(x, y) = \mathsf{zero})$
- $\blacksquare \forall x \exists y \, \mathsf{Parent}(y, x) \land \mathsf{Female}(y)$

Conventions: When we omit parentheses, ∀ and \exists bind less tightly than anything else.

Terminology and notation

Definition (Ground term)

Term that contains no variable symbol

Examples: zero, sum(one, one), donald-duck

Counterexamples: x_4 , product(x, zero)

Similarly: ground atom, ground formula ...

Examples: PerfectSquare(zero) ∨ one = zero

Counterexample: $\exists x \text{ one} = x$

Abreviations

Sequences of quantifiers of the same kind can be collapsed

Sometimes commas and/or colons are used:

- $\blacksquare \ \forall x,y,z \colon \varphi$

- In propositional logic, an interpretation was given by assigning values to the atomic propositions.
- In first-order logic, we need to interpret the meaning of constant, function and relation symbols.
- Variable symbols also need to be given meaning.
- However, this is not done through the interpretation itself, but through a separate variable assignment.

Definition (interpretation)

An interpretation (for S) is a pair $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ consisting of

- a nonempty set D called the domain (or universe) and
- a function ·^I that assigns a meaning to constant, function and relation symbols:
 - $c^{\mathcal{I}} \in D$ for constant symbols $c \in \mathcal{C}$
 - $f^{\mathcal{I}}: D^k \to D$ for k-ary function symbols $f \in \mathcal{F}$
 - $R^{\mathcal{I}} \subseteq D^k$ for k-ary relation symbols $R \in \mathcal{R}$

Definition (variable assignment)

A variable assignment (for S and domain D) is a function $\alpha: \mathcal{V} \to D$.

Idea: extend \mathcal{I} and α to general terms, then to atoms, then to arbitrary formulae

Example: $(\forall x \mathsf{Block}(x) \to \mathsf{Red}(x)) \land \mathsf{Block}(a)$

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (being a block, being red, ...)
- General predicates denote relations between objects (being the child of someone, having a common multiple, ...)
- Universally quantified formulae ("∀") are true if they hold for all objects.
- Existentially quantified formulae ("∃") are true if they hold for at least one object.

Interpretation in first-order logic

Definition (interpretation of a term)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D.

Let t be a term over S.

The interpretation of t under \mathcal{I} and α , in symbols $t^{\mathcal{I},\alpha}$ is an element of the domain D defined as follows:

■ If t = x with $x \in \mathcal{V}$ (t is a variable term): $x^{\mathcal{I},\alpha} = \alpha(x)$

Interpretation in first-order logic

Definition (interpretation of a term)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D.

Let t be a term over S.

The interpretation of t under \mathcal{I} and α , in symbols $t^{\mathcal{I},\alpha}$ is an element of the domain D defined as follows:

■ If t = c with $c \in C$ (t is a constant term): $c^{\mathcal{I},\alpha} = c^{\mathcal{I}}$

Interpretation in first-order logic

Definition (interpretation of a term)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D.

Let t be a term over S.

The interpretation of t under \mathcal{I} and α , in symbols $t^{\mathcal{I},\alpha}$ is an element of the domain D defined as follows:

■ If $t = \mathbf{f}(t_1, \dots, t_k)$ (t is a function term): $(\mathbf{f}(t_1, \dots, t_k))^{\mathcal{I}, \alpha} = \mathbf{f}^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha})$

Interpreting terms: example

```
Signature: S = \langle V, C, F, R \rangle with V = \{x, y, z\}, C = \{\text{zero, one}\}\ F = \{\text{sum, product}\}, arity(\text{sum}) = arity(\text{product}) = 2
```

Interpreting terms: example

```
Signature: S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{\text{zero, one}\}\ \mathcal{F} = \{\text{sum, product}\}, arity(\text{sum}) = arity(\text{product}) = 2
```

$$\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$$
 with

- $D = \{d_0, d_1, d_2, d_3, d_4, d_5, d_6\}$
- \blacksquare zero $^{\mathcal{I}}=d_0$
- one $^{\mathcal{I}} = d_1$
- $\mathsf{sum}^{\mathcal{I}}(d_i, d_j) = d_{(i+j) \bmod 7}, \, \forall i, j \in \{0, \dots, 6\}$
- $\mathsf{product}^{\mathcal{I}}(d_i, d_j) = d_{(i \cdot j) \bmod 7} \, \forall i, j \in \{0, \dots, 6\}$

$$\alpha = \{x \mapsto d_5, y \mapsto d_5, z \mapsto d_0\}$$

Interpreting terms: example

Example (ctd.)

 \blacksquare zero $^{\mathcal{I},\alpha}=$

 $y^{\mathcal{I},\alpha} =$

■ $\operatorname{sum}(x,y)^{\mathcal{I},\alpha} =$

• product(one, sum(x, zero)) $^{\mathcal{I},\alpha} =$

Satisfaction in first-order logic

Definition (satisfaction of a formula)

Let $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and domain D. We say that \mathcal{I} and α satisfy a first-order logic formula φ (also: φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$\mathcal{I}, \alpha \models \mathsf{R}(t_1, \dots, t_k) \quad \mathsf{iff} \ \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in \mathsf{R}^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models t_1 = t_2 \quad \mathsf{iff} \ t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$$

Satisfaction in first-order logic

Definition (satisfaction of a formula)

$$\mathcal{I}, \alpha \models \forall x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := d] \models \varphi \text{ for all } d \in D$$
 $\mathcal{I}, \alpha \models \exists x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := d] \models \varphi \text{ for at least}$
one $d \in D$

where $\alpha[x := d]$ is the variable assignment which is the same as α except for x, where it assigns d. Formally:

$$(\alpha[x := d])(z) = \begin{cases} d & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Satisfaction in first-order logic

Definition (satisfaction of a formula)

```
Signature: S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{a, b\}, \mathcal{F} = \emptyset, \mathcal{R} = \{Block, Red\}, arity(Block) = arity(Red) = 1.
```

```
Signature: S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{R} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{a, b\}, \mathcal{F} = \emptyset, \mathcal{R} = \{Block, Red\}, arity(Block) = arity(Red) = 1.
```

$$\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$$
 with

- $D = \{d_1, d_2, d_3, d_4, d_5\}$
- \blacksquare $\mathbf{a}^{\mathcal{I}}=d_1$
- $lackbox{b}^{\mathcal{I}}=d_3$
- $\mathsf{Block}^{\mathcal{I}} = \{d_1, d_2\}$
- $ightharpoonup {\sf Red}^{\mathcal{I}} = \{d_1, d_2, d_3, d_5\}$

$$\alpha = \{x \mapsto d_1, y \mapsto d_2, z \mapsto d_1\}$$

Questions:

- \mathcal{I} , $\alpha \models \mathsf{Block}(\mathsf{b}) \vee \neg \mathsf{Block}(\mathsf{b})$?
- $\mathcal{I}, \alpha \models \mathsf{Block}(x) \to (\mathsf{Block}(x) \vee \neg \mathsf{Block}(y))$?
- \mathcal{I} , $\alpha \models \mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b})$?
- $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$?

Questions:

■ \mathcal{I} , $\alpha \models \mathsf{Block}(\mathsf{b}) \vee \neg \mathsf{Block}(\mathsf{b})$?

Questions:

■ $\mathcal{I}, \alpha \models \mathsf{Block}(x) \to (\mathsf{Block}(x) \vee \neg \mathsf{Block}(y))$?

Semantics of first-order logic

Questions:

■ \mathcal{I} , $\alpha \models \mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b})$?

Semantics of first-order logic

Questions:

■ $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$?

Satisfaction of sets of formulae

Definition (satisfaction of a set of formulae)

Consider a signature \mathcal{S} , a set of formulae Φ over \mathcal{S} , an interpretation $\mathcal{I} = \langle D, \cdot^{\mathcal{I}} \rangle$ for \mathcal{S} , and a variable assignment α for \mathcal{S} and domain D.

We say that \mathcal{I} and α satisfy Φ (also: Φ is true under \mathcal{I} and α), in symbols: $\mathcal{I}, \alpha \models \Phi$, if $\mathcal{I}, \alpha \models \varphi$ for all $\varphi \in \Phi$.

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and any interpretation \mathcal{I} .
- Which parts of the definition of α matter for $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3 \mathsf{S}(x_3, x_2)$?

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and any interpretation \mathcal{I} .
- Which parts of the definition of α matter for $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3 \mathsf{S}(x_3, x_2)$?

• $\alpha(x_1)$, $\alpha(x_5)$, $\alpha(x_6)$, $\alpha(x_7)$, ... do not matter because these variable symbols do not occur in the formula

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and any interpretation \mathcal{I} .
- Which parts of the definition of α matter for $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3 \mathsf{S}(x_3, x_2)$?

• $\alpha(x_4)$ does not matter either: it occurs in the formula, but all its occurrences are bound by a surrounding quantifier

Question:

- Consider a signature with variable symbols $\{x_1, x_2, x_3, \dots\}$, and any interpretation \mathcal{I} .
- Which parts of the definition of α matter for $\mathcal{I}, \alpha \models (\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3 \mathsf{S}(x_3, x_2)$?

• \rightarrow only the assignments to the free variables x_2 and x_3 matter

Variables of a term

Definition (variables of a term)

Let t be a term. The set of variables occurring in t, written vars(t), is defined as follows:

- $vars(x) = \{x\}$ for variable symbols x
- $vars(c) = \emptyset$ for constant symbols c
- $vars(f(t_1, ..., t_k)) = vars(t_1) \cup \cdots \cup vars(t_k)$ for function terms

Example: vars(product(x, sum(c, y))) =

Free and bound variables of a formula

Definition (free variables)

Let φ be a logical formula. The set of free variables of φ , written $free(\alpha)$, is defined as:

- $free(R(t_1, \ldots, t_k)) = vars(t_1) \cup \cdots \cup vars(t_k)$
- $free(t_1 = t_2) = vars(t_1) \cup vars(t_2)$
- $free(\top) = free(\bot) = \emptyset$
- $free(\neg \varphi) = free(\varphi)$
- $free(\varphi \land \psi) = free(\varphi \lor \psi) = free(\varphi \to \psi)$ = $free(\varphi \leftrightarrow \psi) = free(\varphi) \cup free(\psi)$
- $free(\forall x \varphi) = free(\exists x \varphi) = free(\varphi) \setminus \{x\}$

Free and bound variables of a formula

Example:

free(
$$(\forall x_4(\mathsf{R}(x_4, x_2) \lor \mathsf{f}(x_3) = x_4)) \lor \exists x_3 \mathsf{S}(x_3, x_2))$$
 = ?

Closed formulae/sentences

Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x) = \beta(x)$ for all free variables of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

Closed formulae/sentences

Remark: Let φ be a formula, and let α and β be variable assignments such that $\alpha(x) = \beta(x)$ for all free variables of φ .

Then $\mathcal{I}, \alpha \models \varphi$ iff $\mathcal{I}, \beta \models \varphi$.

In particular, if $free(\varphi) = \emptyset$, then α does not matter at all.

Closed formulae/sentences

Definition (closed formulae/sentences)

A formula φ with no free variables (i. e., $free(\varphi) = \emptyset$) is called a closed formula or sentence.

If φ is a sentence, we often use the notation $\mathcal{I} \models \varphi$ instead of $\mathcal{I}, \alpha \models \varphi$ because the definition of α does not affect whether or not φ is true under \mathcal{I} and α .

Formulae with at least one free variable are called open.

Closed formulae: examples

Question: Which of the following formulae are sentences?

- Block(b) ∨ ¬Block(b)
- Block $(x) \rightarrow (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y))$
- Block(a) ∧ Block(b)
- $\blacksquare \ \forall x(\mathsf{Block}(x) \to \mathsf{Red}(x))$

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use matching signatures and that variable assignments are defined for the correct domain.

Example:

Consider a signature S, a set of formulae Φ over S, an interpretation \mathcal{I} for S, and a variable assignment α for S and the domain of \mathcal{I} .

Omitting signatures and domains

For convenience, from now on we implicitly assume that we use matching signatures and that variable assignments are defined for the correct domain.

Example:

Consider a set of formulae Φ , an interpretation \mathcal{I} and a variable assignment α .

More logic terminology

The terminology we introduced for propositional logic can be reused for first-order logic:

- interpretation \mathcal{I} and variable assignment α form a model of formula φ if $\mathcal{I}, \alpha \models \varphi$.
- formula φ is satisfiable if $\mathcal{I}, \alpha \models \varphi$ for at least one \mathcal{I}, α (i. e., if it has a model)
- formula φ is falsifiable if $\mathcal{I}, \alpha \not\models \varphi$ for at least one \mathcal{I}, α
- formula φ is valid if $\mathcal{I}, \alpha \models \varphi$ for all \mathcal{I}, α

More logic terminology

The terminology we introduced for propositional logic can be reused for first-order logic:

- formula φ is unsatisfiable if $\mathcal{I}, \alpha \not\models \varphi$ for all \mathcal{I}, α
- formula φ entails (also: implies) formula ψ , written $\varphi \models \psi$, if all models of φ are models of ψ
- formulae φ and ψ are logically equivalent, written $\varphi \equiv \psi$, if they have the same models (equivalently: if $\varphi \models \psi$ and $\psi \models \varphi$)

Terminology for formula sets and sentences

All concepts from the previous slide also apply to sets of formulae instead of single formulae. Examples:

- formula set Φ is satisfiable if $\mathcal{I}, \alpha \models \Phi$ for at least one \mathcal{I}, α
- formula set Φ entails formula ψ , written $\Phi \models \psi$, if all models of Φ are models of ψ
- formula set Φ entails formula set Ψ , written $\Phi \models \Psi$, if all models of Φ are models of Ψ

Terminology for formula sets and sentences

All concepts apply to sentences (or sets of sentences) as a special case. In this case, we usually omit α .

Examples:

- interpretation $\mathcal I$ is a model of a sentence φ if $\mathcal I \models \varphi$
- sentence φ is unsatisfiable if $\mathcal{I} \not\models \varphi$ for all \mathcal{I}

Going further

Using these definitions, we can discuss the same topics of propositional logic, such as:

- important logical equivalences
- normal forms
- entailment theorems (deduction theorem etc.)
- proof calculi
- (first-order) resolution

We will mention a few basic results on these topics, but we do not cover them in detail.

Logical equivalences

All propositional logic equivalences also apply to first-order logic (e. g., $\varphi \lor \psi \equiv \psi \lor \varphi$). Additionally, here are some equivalences and entailments involving quantifiers:

```
 \begin{array}{l} (\forall x\varphi) \wedge (\forall x\psi) \equiv \forall x(\varphi \wedge \psi) \\ (\forall x\varphi) \vee (\forall x\psi) \models \forall x(\varphi \vee \psi) \quad \text{but not vice versa} \\ (\forall x\varphi) \wedge \psi \equiv \forall x(\varphi \wedge \psi) \quad \text{if } x \notin \textit{free}(\psi) \\ (\forall x\varphi) \vee \psi \equiv \forall x(\varphi \vee \psi) \quad \text{if } x \notin \textit{free}(\psi) \\ \neg \forall x\varphi \equiv \exists x \neg \varphi \end{array}
```

Logical equivalences

All propositional logic equivalences also apply to first-order logic (e. g., $\varphi \lor \psi \equiv \psi \lor \varphi$). Additionally, here are some equivalences and entailments involving quantifiers:

```
\exists x(\varphi \lor \psi) \equiv (\exists x\varphi) \lor (\exists x\psi)
\exists x(\varphi \land \psi) \models (\exists x\varphi) \land (\exists x\psi) \quad \text{but not vice versa}
(\exists x\varphi) \lor \psi \equiv \exists x(\varphi \lor \psi) \quad \text{if } x \notin \textit{free}(\psi)
(\exists x\varphi) \land \psi \equiv \exists x(\varphi \land \psi) \quad \text{if } x \notin \textit{free}(\psi)
\neg \exists x\varphi \equiv \forall x \neg \varphi
```

Normal forms

Similar to DNF and CNF for propositional logic, there are some important normal forms for first-order logic, such as:

- negation normal form (NNF): negation symbols may only occur in front of atoms
- prenex normal form: quantifiers must be the outermost parts of the formula
- Skolem normal form: prenex normal form with no existential quantifiers

Normal forms

Polynomial-time procedures transform formula φ

- into an equivalent formula in negation normal form,
- into an equivalent formula in prenex normal form, or
- into an equisatisfiable formula in Skolem normal form.

Entailment, proof systems, resolution...

- The deduction theorem, contraposition theorem and contradiction theorem also hold for first-order logic.
- Sound and complete proof systems (calculi) exist for first-order logic
- Resolution can be generalized to first-order logic by using the concept of unification.
- This first-order resolution is refutation complete, and hence gives a general reasoning algorithm for first-order logic.
- However, the algorithm does not terminate on all inputs.

Summary

- First-order logic is a richer logic than propositional logic and allows us to reason about objects and their properties.
- Objects are denoted by terms built from variables, constants and function symbols.
- Properties are denoted by formulae built from predicates, quantification, and the usual logical operators such as negation, disjunction and conjunction.
- We only scratched the surface. Further topics are discussed in other courses from the AI group.