
Albert-Ludwigs-Universität Freiburg, Institut für Informatik
Dr. Gian Diego Tipaldi, Dr. Luciano Spinello, Prof. Wolfram Burgard
Lecture: Robot Mapping
Winter term 2014

Sheet 10
Topic: Graph-Based SLAM

Submission deadline: January 29 (Task 1), February 5 (Task 2)
Submit to: robotmappingtutors@informatik.uni-freiburg.de

Exercise: Graph-Based SLAM

Implement a least-squares method to address SLAM in its graph-based formulation.
To support this task, we provide a small Octave framework (see course website).
The framework contains the following folders:

data contains several datasets, each gives the measurements of one SLAM problem

octave contains the Octave framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the
directory octave by completing the stubs:

1. • Implement the function in compute global error.m for computing the
current error value for a graph with constraints.

• Implement the function in linearize pose pose constraint.m for com-
puting the error and the Jacobian of a pose-pose constraint. Test your
implementation with test jacobian pose pose.

• Implement the function in linearize pose landmark constraint.m for
computing the error and the Jacobian of a pose-landmark constraint.
Test your implementation with test jacobian pose landmark.

2. • Implement the function in linearize and solve.m for constructing and
solving the linear approximation.

• Implement the update of the state vector and the stopping criterion in
lsSLAM.m. A possible choice for the stopping criterion is ‖∆x‖∞ < ε,
i.e., ‖∆x‖∞ = max (|∆x1|, . . . , |∆xn|) < ε.

After implementing the missing parts, you can run the framework. To do that,
change into the directory octave and launch Octave. To start the main loop, type
lsSLAM. The script will produce a plot showing the positions of the robot and (if

1

-20

-15

-10

-5

0

5

-30 -20 -10 0 10 20

-25

-20

-15

-10

-5

0

5

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

-10 -5 0 5 10

-30

-20

-10

0

10

20

-50 -40 -30 -20 -10 0 10 20

simulation-pose-pose intel simulation-pose-landmark dlr

Figure 1: Result for each dataset.

available) the positions of the landmarks in each iteration. These plots will be saved
in the plots directory.

Figure 1 depicts the result that you should obtain after convergence for each dataset.
Additionally, the initial and the final error for each dataset should be approximately:

dataset initial error final error

simulation-pose-pose.dat 138862234 8269
intel.dat 1795139 360
simulation-pose-landmark.dat 3030 474
dlr.dat 369655336 56860

The state vector contains the following entities:

• pose of the robot: xi = (xi yi θi)
T

Hint: You may use the function v2t(·) and t2v(·):

v2t(xi) =

(
Ri ti
0 1

)
=

cos(θi) − sin(θi) xi
sin(θi) cos(θi) yi

0 0 1

 = Xi

t2v(Xi) = xi

• position of a landmark: xl = (xl yl)
T

We consider the following error functions:

• pose-pose constraint: eij = t2v(Z−1ij (X−1i Xj)), where Zij = v2t(zij) is the
transformation matrix of the measurement zTij = (tTij, θij).
Hint: For computing the Jacobian, write the error function with rotation
matrices and translation vectors:

eij =

(
RT

ij(R
T
i (tj − ti)− tij)
θj − θi − θij

)

• pose-landmark constraint: eil = RT
i (xl − ti)− zil

2

