Robot Mapping

A Short Introduction to Homogeneous Coordinates

Gian Diego Tipaldi, Luciano Spinello, Wolfram Burgard

Motivation

- Cameras generate a projected image of the world
- Euclidian geometry is suboptimal to describe the central projection
- In Euclidian geometry, the math can get difficult
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Math becomes simpler

Projective Geometry

- Projective geometry does not change the geometric relations
- Computations can also be done in Euclidian geometry (but more difficult)

Homogeneous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Formulas involving H.C. are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates
- A single matrix can represent affine transformations and projective transformations

Homogeneous Coordinates

- H.C. are a system of coordinates used in projective geometry
- Formulas involving H.C. are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates

 A single matrix can represent affine transformations and projective transformations

Homogeneous Coordinates

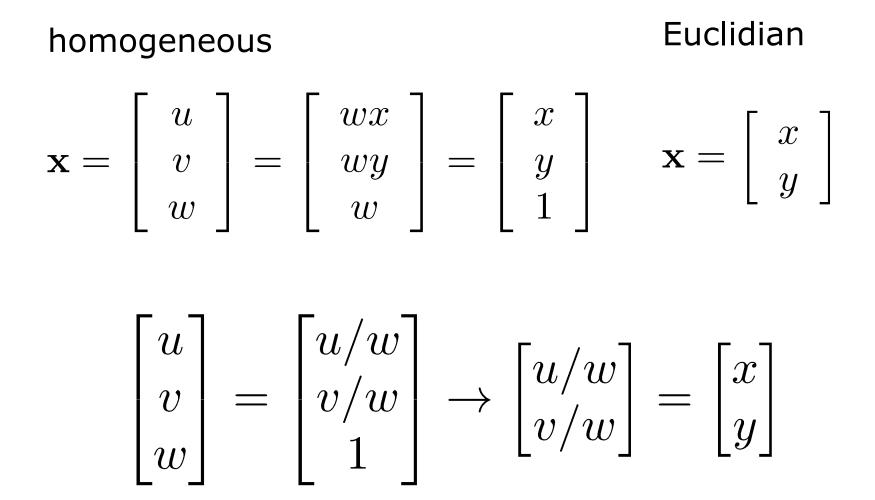
Definition

• The representation \mathbf{x} of a geometric object is homogeneous if \mathbf{x} and $\lambda \mathbf{x}$ represent the same object for $\lambda \neq 0$

Example

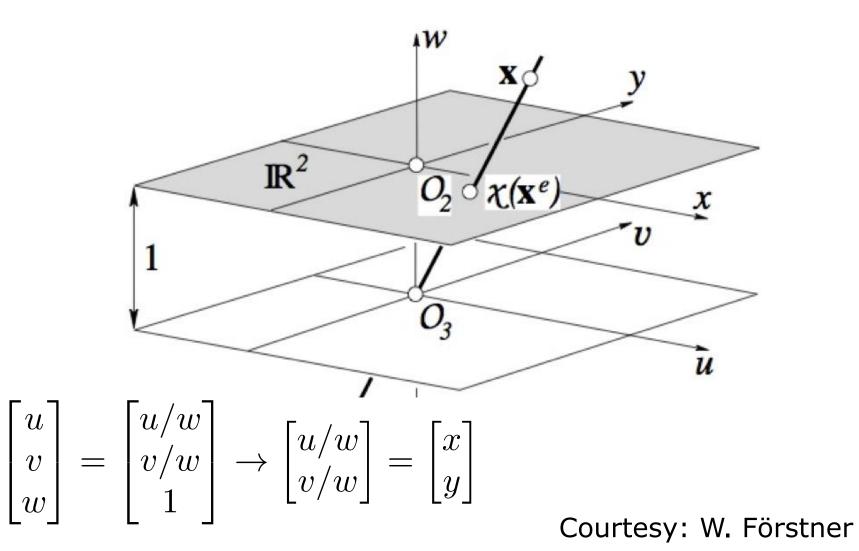
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

From Homogeneous to Euclidian Coordinates



7

From Homogeneous to Euclidian Coordinates



8

Center of the Coordinate System

Infinitively Distant Objects

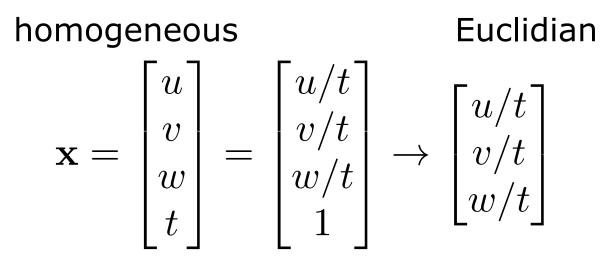
 It is possible to explicitly model infinitively distant points with finite coordinates

$$\mathbf{x}_{\infty} = \begin{bmatrix} u \\ v \\ 0 \end{bmatrix}$$

 Great tool when working with bearingonly sensors such as cameras

3D Points

Analogous for 3D points



Transformations

 A projective transformation is a invertible linear mapping

$\mathbf{x}' = M\mathbf{x}$

Important Transformations (\mathbb{P}^3)

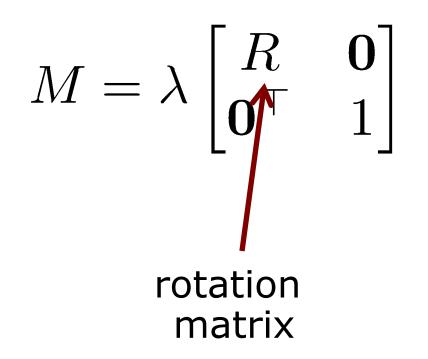
General projective mapping

$$\mathbf{x'} = M_{4 \times 4} \mathbf{x}$$

• Translation: 3 parameters (3 translations) $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $M = \lambda \begin{bmatrix} I & \mathbf{t} \\ \mathbf{0} & \mathbf{t} \end{bmatrix} \quad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Important Transformations (\mathbb{P}^3)

 Rotation: 3 parameters (3 rotation)



Recap – Rotation Matrices

$$R^{2D}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$R_x^{3D}(\omega) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\omega) & -\sin(\omega) \\ 0 & \sin(\omega) & \cos(\omega) \end{bmatrix} \quad R_y^{3D}(\phi) = \begin{bmatrix} \cos(\phi) & 0 & \sin(\phi) \\ 0 & 1 & 0 \\ -\sin(\phi) & 0 & \cos(\phi) \end{bmatrix}$$
$$R_z^{3D}(\kappa) = \begin{bmatrix} \cos(\kappa) & -\sin(\kappa) & 0 \\ \sin(\kappa) & \cos(\kappa) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R^{3D}(\omega,\phi,\kappa) = R_z^{3D}(\kappa)R_y^{3D}(\phi)R_x^{3D}(\omega)$$

Important Transformations (\mathbb{P}^3)

Rotation: 3 parameters
 (3 rotation)

$$M = \lambda \begin{bmatrix} R & \mathbf{0} \\ \mathbf{0}^\top & 1 \end{bmatrix}$$

 Rigid body transformation: 6 params (3 translation + 3 rotation)

$$M = \lambda \begin{bmatrix} R & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{bmatrix}$$

Important Transformations (\mathbb{P}^3)

Similarity transformation: 7 params
 (3 trans + 3 rot + 1 scale)

$$M = \lambda \begin{bmatrix} mR & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

Affine transformation: 12 parameters
 (3 trans + 3 rot + 3 scale + 3 sheer)

$$M = \lambda \begin{bmatrix} A & \mathbf{t} \\ \mathbf{0}^\top & \mathbf{1} \end{bmatrix}$$

Transformations in \mathbb{P}^2

2D Transformation	Figure	d. o. f.	Н	Н
Translation	ħ. İ.	2	$\left[\begin{array}{rrr} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{array} \right]$	$\begin{bmatrix} 1 & \mathbf{t} \\ 0^{T} & 1 \end{bmatrix}$
Mirroring at y-axis	ħ. đ.,	1	$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\left[\begin{array}{cc} \boldsymbol{Z} & \boldsymbol{0} \\ \boldsymbol{0}^{T} & \boldsymbol{1} \end{array}\right]$
Rotation	Þ. Ø.	1	$\left[egin{array}{c} \cos arphi & -\sin arphi & 0 \ \sin arphi & \cos arphi & 0 \ 0 & 0 & 1 \end{array} ight]$	$\left[\begin{array}{cc} R & 0 \\ 0^{T} & 1 \end{array}\right]$
Motion	ħ. 10	3	$\left[egin{array}{ccc} \cosarphi & -\sinarphi & t_x\ \sinarphi & \cosarphi & t_y\ 0 & 0 & 1 \end{array} ight]$	$\begin{bmatrix} R & t \\ 0^{T} & 1 \end{bmatrix}$
Similarity	₽. ₽	4	$\left[egin{array}{ccc} a & -b & t_x \ b & a & t_y \ 0 & 0 & 1 \end{array} ight]$	$\left[\begin{array}{cc} \lambda R & t \\ 0^{T} & 1 \end{array}\right]$
Scale difference	b. L.	1	$\begin{bmatrix} 1+m/2 & 0 & 0 \\ 0 & 1-m/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{cc} D & 0 \\ 0^{T} & 1 \end{array}\right]$
Shear	b. 12.	1	$\left[\begin{array}{rrrr} 1 & s/2 & 0 \\ s/2 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\begin{bmatrix} S & 0 \\ 0^{T} & 1 \end{bmatrix}$
Asym. shear	ħ. ħ.	1	$\left[\begin{array}{rrrr} 1 & s' & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\left[\begin{array}{cc} S' & 0 \\ 0^{T} & 1 \end{array}\right]$
Affinity	b. 12	6	$\left[\begin{array}{rrrr}a&b&c\\d&e&f\\0&0&1\end{array}\right]$	$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ 0^{T} & 1 \end{bmatrix}$
Projectivity	þ. íp.	8	$\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right]$	$\begin{bmatrix} A & t \\ p^{T} & 1/\lambda \end{bmatrix}$

Courtesy: K. Schindler 18

Transformations

Inverting a transformation

$$\mathbf{x}' = M\mathbf{x}$$
$$\mathbf{x} = M^{-1}\mathbf{x}'$$

Chaining transformations via matrix products (not commutative)

$$\mathbf{x}' = M_1 M_2 \mathbf{x}$$
$$\neq M_2 M_1 \mathbf{x}$$

Motions

 We will express motions (rotations and translations) using H.C.

$$M = \lambda \begin{bmatrix} R & \mathbf{t} \\ \mathbf{0}^\top & \mathbf{1} \end{bmatrix}$$

Chaining transformations via matrix products (not commutative)

$$\mathbf{x}' = M_1 M_2 \mathbf{x}$$

Conclusion

- Homogeneous coordinates are an alternative representation for geometric objects
- Equivalence up to scale

 $\mathbf{x} \equiv \lambda \mathbf{x}$ with $\lambda \neq 0$

- Modeled through an extra dimension
- Homogeneous coordinates can simplify mathematical expressions
- We often use it to represent the motion of objects

Literature

Homogeneous Coordinates

- Photogrammetrie I Skript by Wolfgang Förstner
- Wikipedia as a good summary on homogeneous coordinates: http://en.wikipedia.org/wiki/Homogeneous_coordinates

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Edwin Olson, Pratik Agarwal, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de