Robot Mapping

A Short Introduction to the Bayes Filter and Related Models

Gian Diego Tipaldi, Luciano Spinello, Wolfram Burgard

State Estimation

- Estimate the state \boldsymbol{x} of a system given observations \boldsymbol{z} and controls \boldsymbol{u}
- Goal:

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$

Definition of the belief

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ = $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$

Bayes' rule

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

= $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

= $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \frac{p(x_{t-1} \mid z_{1:t-1}, u_{1:t})}{p(x_{t-1} \mid z_{1:t-1}, u_{1:t})} dx_{t-1}$

Law of total probability

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int \underline{p(x_t \mid x_{t-1}, u_t)} p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

Recursive term

Prediction and Correction Step

- Bayes filter can be written as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

sensor or observation model

Different Realizations

- The Bayes filter is a **framework** for recursive state estimation
- There are different realizations

Different properties

- Linear vs. non-linear models for motion and observation models
- Gaussian distributions only?
- Parametric vs. non-parametric filters

In this Course

Kalman filter & friends

- Gaussians
- Linear or linearized models

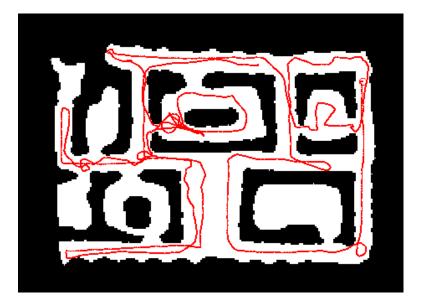
Particle filter

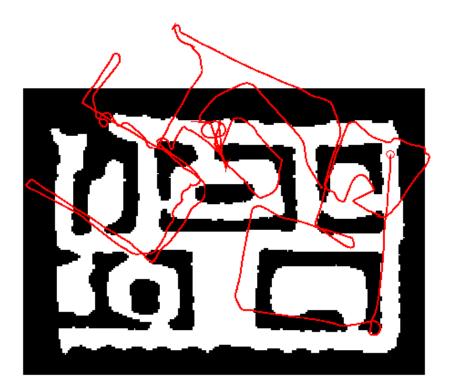
- Non-parametric
- Arbitrary models (sampling required)

Motion Model $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

Robot Motion Models

- Robot motion is inherently uncertain
- How can we model this uncertainty?





Courtesy: Thrun, Burgard, Fox 15

Probabilistic Motion Models

 Specifies a posterior probability that action u carries the robot from x to x'.

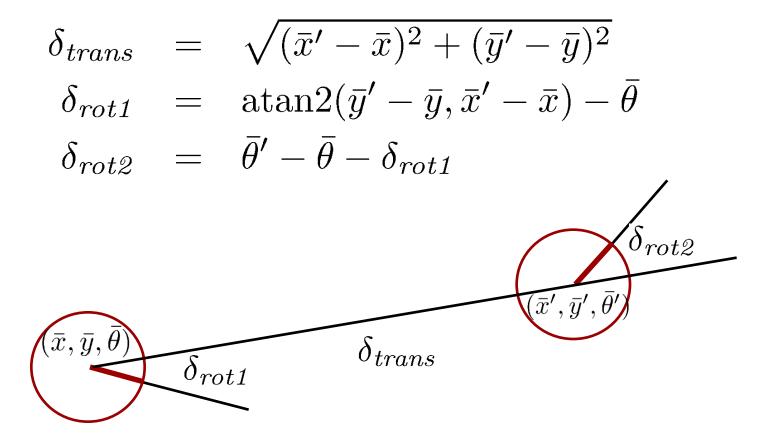
$$p(x_t \mid u_t, x_{t-1})$$

Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based
- Odometry-based models for systems that are equipped with wheel encoders
- Velocity-based when no wheel encoders are available

Odometry Model

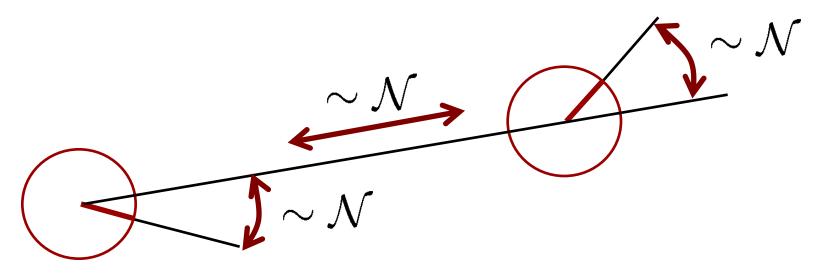
- Robot moves from $(\bar{x}, \bar{y}, \bar{ heta})$ to $(\bar{x}', \bar{y}', \bar{ heta}')$
- Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$



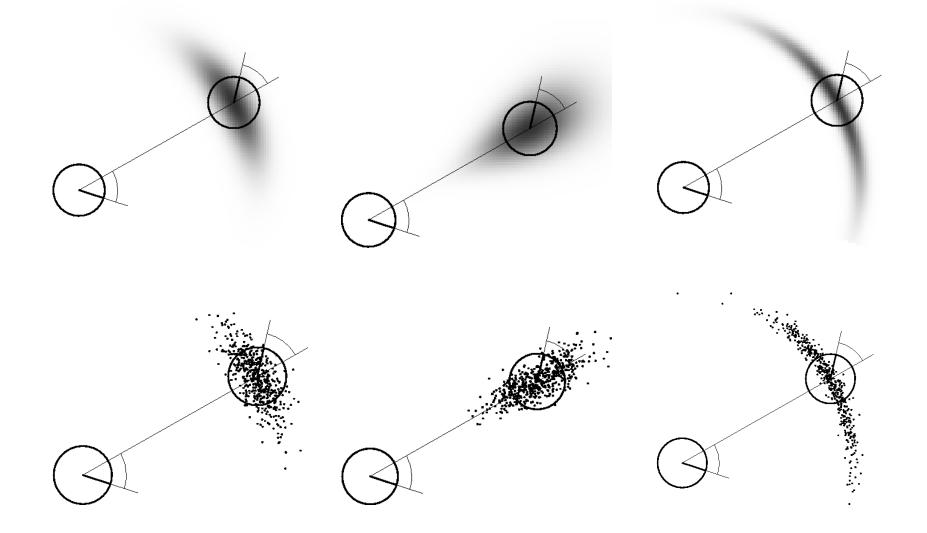
Probability Distribution

- Noise in odometry $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$
- Example: Gaussian noise

 $u \sim \mathcal{N}(0, \Sigma)$

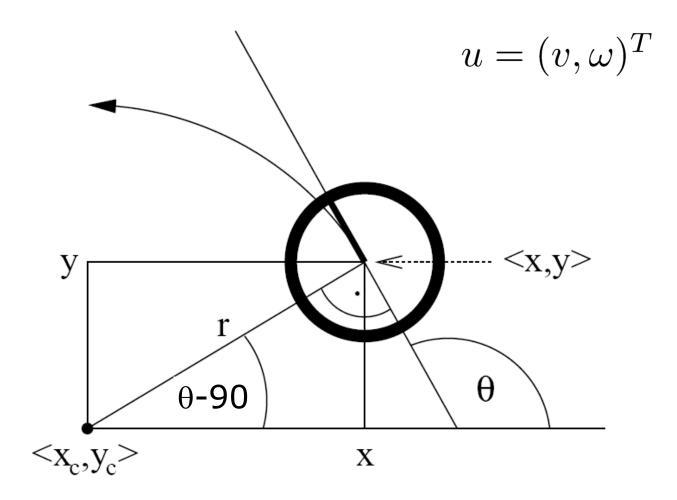


Examples (Odometry-Based)



Courtesy: Thrun, Burgard, Fox 20

Velocity-Based Model



Courtesy: Thrun, Burgard, Fox 21

Motion Equation

- Robot moves from (x, y, θ) to (x', y', θ')
- Velocity information $u = (v, \omega)$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t \end{pmatrix}$$

Problem of the Velocity-Based Model

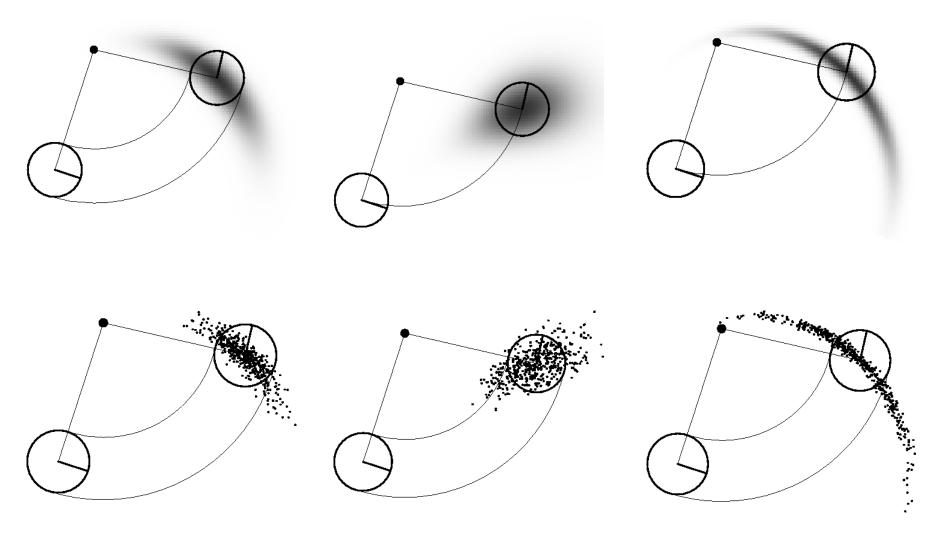
- Robot moves on a circle
- The circle constrains the final orientation
- Fix: introduce an additional noise term on the final orientation

Motion Including 3rd Parameter

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t + \gamma\Delta t \end{pmatrix}$$

Term to account for the final rotation

Examples (Velocity-Based)



Courtesy: Thrun, Burgard, Fox 25

Sensor Model $bel(x_t) = \eta p(z_t \mid x_t) bel(x_{t-1})$

Model for Laser Scanners

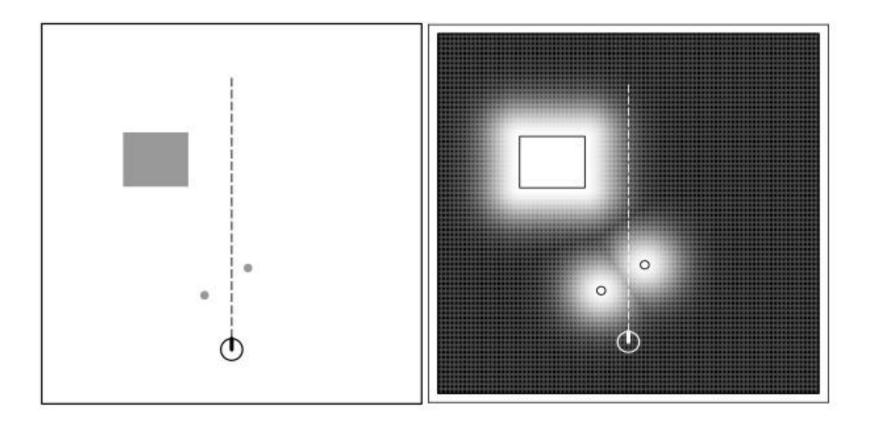
Scan z consists of K measurements.

$$z_t = \{z_t^1, \dots, z_t^k\}$$

 Individual measurements are independent given the robot position

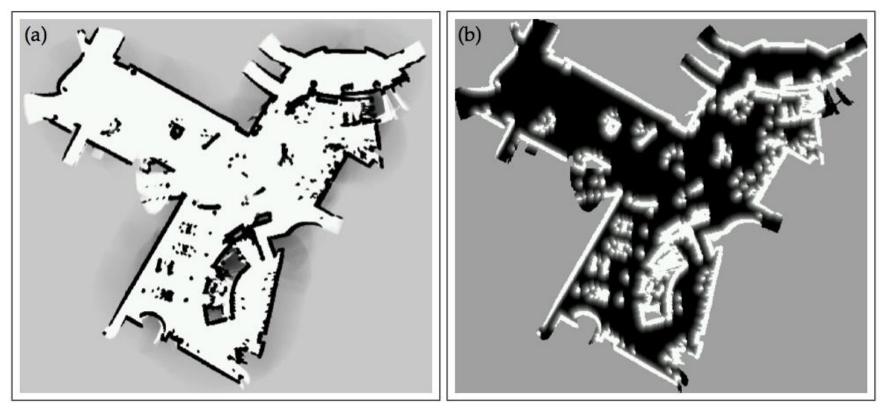
$$p(z_t \mid x_t, m) = \prod_{i=1}^k p(z_t^i \mid x_t, m)$$

Beam-Endpoint Model



Courtesy: Thrun, Burgard, Fox 28

Beam-Endpoint Model



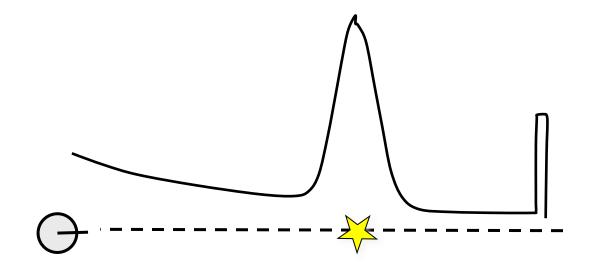
likelihood field

map

Courtesy: N. Roy 29

Ray-cast Model

- Ray-cast model considers the first obstacle long the line of sight
- Mixture of four models



Model for Perceiving Landmarks with Range-Bearing Sensors

- Range-bearing $z_t^i = (r_t^i, \phi_t^i)^T$
- Robot's pose $(x, y, \theta)^T$
- Observation of feature j at location $(m_{j,x}, m_{j,y})^T$

$$\begin{pmatrix} r_t^i \\ \phi_t^i \end{pmatrix} = \begin{pmatrix} \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\ \operatorname{atan2}(m_{j,y} - y, m_{j,x} - x) - \theta \end{pmatrix} + Q_t$$

Summary

- Bayes filter is a framework for state estimation
- Motion and sensor model are the central models in the Bayes filter
- Standard models for robot motion and laser-based range sensing

Literature

On the Bayes filter

- Thrun et al. "Probabilistic Robotics", Chapter 2
- Course: Introduction to Mobile Robotics, Chapter 5

On motion and observation models

- Thrun et al. "Probabilistic Robotics", Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14. I created this set of slides partially extending existing material of Edwin Olson, Pratik Agarwal, and myself.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de